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Abstract

Neutrinos are extremely light particles that undergo flavor oscillations due to their masses, masses which
are unexplained by the Standard Model (SM). This analysis sought numerical solutions for two previously
existing neutrino mass generation models that blend supersymmetry and the Inverse Seesaw mechanism.
The first model is analytically solvable but requires one massless SM neutrino. The second model allows
all three SM neutrinos to be massive but is underconstrained and requires a major simplication to solve
analytically. Using MATLAB, previous analytical solutions for each model were found numerically and a
method for obtaining solutions without major simplifications was developed for the second model. The
results found predict decay signatures that may be investigated in future collider experiments, and target
regions of interest in the underconstrained parameter space. These solutions fit known neutrino oscillation
and cosmological constraints.



1 Theory

1.1 Neutrino Oscillations

Neutrinos are by far the lightest of the massive particles found in the Standard Model of particle physics.
They come in the three leptonic flavors (electron, muon and tau) and rarely interact: of the billions passing
through every square centimeter of stuff on Earth per second, only a small handful will react with other
matter. Most neutrinos that are observed on Earth are produced from the fusion process in the interior of
the Sun or high-energy cosmic rays producing particle showers when they interact with the atmosphere.
Neutrinos can also be generated in abundance from nuclear reactors and experiments.

Curiously, according to the Standard Model, all neutrinos should be massless. The first experiment
to contradict this theory was preformed in 1968 by Ray Davis[l]. This experiment measured electron
neutrinos produced by the Sun over a period of months by flushing about 30 argon atoms out of 615 metric
ton tank of chlorine. This was only a third of the predicted yield. With such small numbers the scientific
community was skeptical until other experiments started to independently confirm these results, verifying
what came to be known as The Solar Neutrino Problem|[2].

The mechanism explaining the “missing” neutrinos was proposed that same year by Pontecorvo and
Gribov, [3]. If the the three neutrino flavour states were not eigenstates of the Hamiltonian, they would
evolve over time. If this was the case, electron neutrinos would oscillate to another state during the flight
to Earth, and explain why fewer signals were seen by electron-neutrino-sensitive experiments.

The flavour oscillations of the Solar Neutrino Problem can be well approximated as mixing between two
flavour states: v, and a linear combination state of v, and v, (denoted by v, in the subsequent example) [4].
The basis of the two flavour states {|v.),|v,)} and two mass states {|v1) , |vo)}, which are the eigenstates
of the Hamiltonian, are related by a unitary rotation matrix, U, which depends on the mixing angle 6
between the flavour eigenstates.
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Starting with the initial electron neutrino produced in the Sun, the state evolves in time as
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where F; are eigenvalues of the Hamiltonian for the two mass eigenstates. For most practical applications
it is best to reformulate this state in terms of the distance L that the neutrino travels. Assuming that the

electron neutrino is ultra-relativistic (E =/ |p]P? + m?ct = |p]c> and it has a constant energy F
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We can then calculate the probability that this neutrino is still in the electron flavour state upon
measurement. Substituting for £} and Ey
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By collecting data for various distances and neutrino energies, it is possible to solve for the the mixing
angle and mass squared difference m; —m3 = Am;.

Most early neutrino detectors were focused on solving the solar neutrino problem. The Kamiokande and
Super Kamiokande experiments in Japan studied solar neutrinos with energies > 5.0 — 7.5 MeV by looking
for the Cherenkov radiation in water that was produced when neutrinos underwent an elastic scattering
reaction [5]

v+e —vte. (7)

In these experiments, all neutrinos can scatter by exchange of a Z-boson but only electron neutrinos can
scatter with a W-boson, a reaction with a larger cross-section. This leads to an elastic scattering flux with
an 85% lesser contribution from muon and tau neutrinos.

(I)elastic 08 (I)I/e +0.15 ((buu + (I)VT) (8)

Super-K only measured 45% of the neutrino flux predicted by the best models of solar fusion [5]. If
correct, it meant that 65% of the original electron neutrinos had changed flavours before being detected
on Earth. The final piece of evidence confirming neutrino oscillations came in 2002 when the Sudbury
Neutrino Observatory (SNO) in Sudbury, Canada confirmed the hypothesis by measuring the flux of
electron neutrinos in conjunction with the elastic scattering flux [6]. Unlike the Kamiokande experiments,
SNO used heavy water permitting two additional reactions: charged current, exclusive to only electron
neutrinos

ve+ H—op+pte (9)

and neutral current, for all neutrinos
v+ H—=p+n+v (10)

Using the elastic, charged current, and neutral current reactions, SNO was able to confirm that 2/3
of the electrons neutrinos in the Sun had undergone a flavour oscillation (figure 1). The KamLAND
experiment in Japan independently confirmed electron neutrino oscillations by measuring antineutrinos
produced in nuclear reactors [7]. The mass squared difference and mixing angle found were 6, ~ 35° and
Am?2, ~8x 107°eV? [2].
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Figure 1: Comparison of neutrino fluxes from the three different reactions observed at SNO (width = +10)
[6]. The diagonal dashed lines indicate the Solar Standard Model (SSM) theoretical prediction of neutrino
production. Their intersection matches the fit values consistent with oscillations occurring.

The Kamiokande experiments were also searching for muon neutrino oscillations from cosmic ray col-
lisions in the upper atmosphere. Pions formed in these collisions will create muons and muon neutrinos
with energies between 10% — 101%V

™=y, T o+, (11)

Muons at “lower” energies may also decay into electron and muon neutrinos.
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The cosmic ray flux is mostly isotropic, meaning that an equal number of muon neutrinos should be
coming in all directions after striking Earth’s atmosphere. However, muon neutrinos produced above the
detector quickly travel to the detector without time to oscillate, but those coming in the opposite direction
must travel Earth’s entire diameter. Able to measure the direction of the neutrinos, Kamiokande found
roughly a 2:1 ratio of muon to electron neutrinos overhead, while a much lower ratio from the opposite
direction. In this case, the muon neutrinos were oscillating into tau neutrinos as they passed through
the Earth. This scenario can once again be modeled as a two-generation mixing as no additional electron
neutrinos were produced.

Qatm ~ 450 (13)

Am?,  ~3x107%eV? (14)

atm

1.2 Experimental Constraints

Multiple other experiments have leveraged different length and energy scales to probe neutrino oscillations.
The case of three neutrinos can be described by three mixing angles 65, 613, 623 and two mass squared



differences Am3,, Am3, (the third can be written in terms of the other differences). The 3[ notation comes
from inherent ambiguity in the mass hierarchy of the mass eigenstates. Since oscillation experiments only
measure relative mass differences, 3 may be the heaviest or lightest eigenstate. This creates two possible
scenarios: normal- and inverted-hierarchy (figure 2a). The measured differences are Am2; ~ Am?, and
Am2, ~ Am?2, .

The mixing matrix that describes the transformation between the three mass and flavour eigenstates
is known as the Pontecorvo-Maki-Nakagawa—Sakata (PMNS) matrix and is parameterized by the three
mixing angles (eqn. 15) [8]. For the purposes of this discussion the CP-violation phase 6 = 0. This matrix
is analogous in function to the Cabibbo-Kobayashi-Maskawa matrix which describes quark mixing via the

weak interaction.
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The terms 015 =~ 04,1, and fa3 ~ O, Which are much greater in size than 63 < 10°. The PMNS matrix
also tells us the flavour composition of the mass eigenstates (figure 2b).
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Figure 2: a) Normal (left) and inverted (right) hierarchies of the three neutrino mass eigenstates vy, vs, v3
(not to scale). b) Flavour composition of the three mass eigenstates found from the PMNS matrix elements
(data from [9]).

The values of the mixing angles and mass squared differences used in this analysis are taken from pub-
lications from NuFIT, an organization that provides “[A]n updated global analysis of neutrino oscillation
measurements”. The specific values below are referenced from the NuFIT 5.3 release (including the Super
Kamiokande atmospheric data) [9](www.nu-fit.org).

012 = 33.677572 deg, 013 = 8.5810 11 deg, Oy3 = 42.37) 5" deg (16)
|Ama|? = (7.4170:30) 107°eV?, |Amg|* = (2.5057005) 10~ %eV? (17)
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To find the 1o confidence intervals on the individual PMNS elements, a numerical scan was preformed
by varying each mixing angle between its confidence bounds. For each element, the maximum and minimum
value found in the scan gave the error bound (6 = 0).
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Two other constraints can be placed on the neutrino mass. Using measurements of baryon acoustic
oscillations, the DESI collaboration have put an upper limit on the sum of the neutrino masses at » > m, <
0.064 eV assuming the ACDM model of the universe [10]. Another experiment, KATRIN, is attempting
to directly measure the scale of the SM neutrino masses and has recently put an upper bound on the
heaviest neutrino mass at ms < 0.5 eV [11]. The DESI result is still much more constraining but KATRIN
is expected to continue lowering the upper bound and possibly discover the actual value of the heaviest
SM neutrino state.

1.3 New Physics

In the Standard Model all fermions such as electrons, quarks, etc., can be described as being left- or
right-handed. These are known as Dirac fermions and can gain mass by the Higgs mechanism which
switches their handedness. As the SM neutrinos are only left-handed (antineutrinos are right handed) they
cannot be given mass through the Higgs mechanism if they are Dirac particles. Unlike other SM particles,
neutrinos could be Majorana fermions and would be their own antiparticle. Many experiments are trying
to observe neutrinoless double § decay, which would be a smoking gun signature of Majorana neutrinos.
If it is observed neutrinos would explicitly violate lepton number (see [12] for more detail).

The Seesaw mechanism is the most popular theory that explains the smallness of the neutrino masses.
Presented is a toy model where a heavy Majorana particle is added to the SM neutrino mass matrix

0 av
M = ( 0 o ) (19)
where M is the Majorana mass of the new particle, v is the vacuum expectation value of the Higgs field

(measured at the LHC to be 246 GeV) and z is the mixing parameter between the two neutrinos. The
small eigenvalue associated with the SM neutrinos would then be

1
Mol = 5 (M VM 4xv2> (20)

which goes as (xv)?/M for M >> xv, making the SM neutrinos lighter for a heavier Majorana particle.

The Inverse Seesaw Mechanism (ISSM) adds a pseudo-Dirac fermion to the SM with a Dirac mass Mp.
This fermion is made of two other particles, with their own Majorana masses. In ISSM the SM neutrino
masses are proportional to the Majorana masses of the new particles meaning that if these Majorana
masses are small, lepton number is minimally violated [13].

This analysis seeks to extend work done by Dr. Seyda Ipek and Cem Ayber on two theories combining
ISSM and Supersymmetry adding two, and then four new SUSY particles in an ISSM scenario [14, 15].
These particles could be produced at a messenger scale Ay ~ O(100—1000TeV). This range accommodates



the neutrino oscillation observables in the two models presented and previous searches of lepton flavour
violation at lower energy.

The first model [14] adds two particles, the bino and singlino with Majorana masses mg and mg. These
form a psudeo-Dirac particle known as the “birvo” with a Dirac mass Mp. The matrix describing the mass
interactions in the {v,,v,,v,, B, S} basis takes the form

03><3 Yv Guo
M
M~ [ Y0 mp Mp Y_ADb,G:% (21)
GTv Mp mg M M

where mg/, is the gravitino mass (another SUSY particle). The Y and G vectors describe the mixing of
the bino and singlino with the SM particles and depend on two unit vectors b and s. The Majorana masses
of the bino and singlino and gravitino are orders of magnitude smaller than Dirac mass

mg ~ mg ~ mgjs ~ O(keV) < Mp ~ O(GeV — TeV) (22)

When finding the eigenvalues of equation 21, one mass will necessarily be zero (m; in the normal
hierarchy). From the observed mass squared differences of the SM neutrinos

b-s=p~0.7 (23)

The components of the two vectors are found from the PMNS matrix elements and p with i = e, u, 7

0.35
—(«/1+ L+ /14 ) 0.85
V2 0.39
(24)
—0.06
—<\/1+ ~VTHpUy) = | oa
7
0.89
m3 /90
mag = —5—(1F p) (25)
M
The scenario with four SUSY particles [15] adds the wino and tripletino particles forming a second

psudeo-Dirac particle, the "wirvo”. Notably this scenario permits three non-zero mass states for the SM
neutrinos. The mass matrix in this theory is

053 Yzv Yyzv Ggv Gro

YEU mp 0 Mg 0 YB:ABb Y, :JX[—WW
M= YIT/%/’U 0 My, 0 MW R mivjz m;\jz (26)
va MB 0 mS 0 GS = AM S GT = A]u t

Hv 0 Mz 0 mr

Mg and My;, are the Dirac masses of the pseudo-Dirac particles and m; and my are the Majorana
masses of the wino and tripletino, Y5, Y;,, Gg, G are the SM interaction terms and each depends on
one unit vector b, w, s, t. This matrix is not easily analytically solvable. In the scenario where s =t =0
it returns the solutions of the 5-by-5 matrix, with Y — G (eqn. 24)[15].

7



e /u/tt e/t
~ = q ~ = q
q s B e q ¢ B W
‘ q ’ q
N - q N q
g’y __ B & SN B Zh
o q q
e/t v E
q , (M.E)

Figure 3: Decay strcuctures of the bino into Standard model particles. ¢ are squarks (supersymmetric
quarks), W W=, Z% are the electroweak bosons and h is the Higgs boson. The decay products can be
leptons, jets (quarks) or neutrinos (missing energy not collected by the LHC detectors).

Most analysis looks for unit vectors such that diagonalizing the mass matrices with the PMNS matrix
returns SM neutrino mass states matching the mass constraints. The unit vectors characterize the decay
structure of the new particles into SM particles which may be seen in the Large Hadron Collider (LHC)
or future collider experiments. There are three ways for the bino (or wino if it happens to be lighter) to
decay: B — W=*IF, B — Zv and B — hv (fig. 3). For many decays observed at the LHC, the ratio of the
resulting final states ee : puu and ev : pv can be tested against the theoretical branching ratios given by
unit vector elements as follows

|b1[? e
b | =BR. | 4 (27)
|bs|? T

2 Analysis

2.1 5-by-5 Matrix

The majority of the numerical analysis was performed in MATLAB due to its ability to work efficiently
with vectors and matrices.

Initial analysis was performed on the 5-by-5 mass matrix since it already had and analytical solution,
making it a good test case to develop numerical techniques. Since the diagonal Majorana mass terms were
many orders of magnitude smaller than the Dirac mass terms, they could be set to zero with little effect
on the diagonalization results (eqn. 28, based on eqn. 21).

03><3 Yv Guo
M~ | YT 0 M (28)
GT’U MD 0

The other values were set as suggested by [14].

Ay =~ 100 TeV
ms/s ~ 10keV

The eigenvalues of M returned the neutrino mass eigenstates. There were two TeV scale eigenstates for
the Dirac masses of the birvo and antibirvo, one zero mass eigenstate, and two with a magnitude between



0.001-0.1 eV. The eigenvectors of the light neutrino masses should form the PMNS matrix (i.e. the PMNS
matrix should diagonalize upper 3-by-3 part of M).

2.1.1 General Techniques

The main variables being changed were the unit vectors b and s. It was important that these were being
sampled from a uniform distribution over a sphere. However defining a sample distribution based on
uniform values of # and ¢ would lead to high anisotropy between the poles and the equator. The algorithm
outlined by Gonzalez [16] was used to uniformly tile a sphere with points, creating an isotropic unit vector
distribution.

MATLAB supports 3D matrices (rows, columns, pages) and can perform operations much more quickly
on a single, paged matrix than iterating over the same number of 2D matrices with a for-loop. Analyzing
samples this way uses considerably more RAM but was able to reduce computation time by well over a
factor of 10 for very large scans.

Using the eig() function (or pageeig() for paged matrices) returns the eigenvalues and eigenvectors of
M (eqn. 28). Diagonalizing the matrix was typically the most taxing operation of the algorithm; reducing
the number of times eig() was called greatly improved efficiency.

A custom data type “float-with-error” (float_w_err) was created to represent a number with an asso-
ciated uncertainty. It stores the central value and the upper and lower errors. By redefining the behavior
of the eq() function for this data type, it is possible to check if a normal number falls within the bounds of
a float-with-error using an equality statement. This method is more intuitive, clearer to read, and simpler
to write than using greater- and less-than statements directly in the code. Additionally, making the errors
larger for initial, sparse scans was much easier using this technique as the uncertainty was stored separately
from the central value.

2.1.2 Finding the PMNS Matrix

The first scans over the possible b and s vectors focused on finding the correct PMNS matrix and looked at
all possible combinations of vectors on the unit sphere. This algorithm required N? matrices to be checked
so only a very sparse scan was possible. To compensate for this reduction, the uncertainty on individual
PMNS matrix elements was set to an increased, uniform value. After finding some solutions it was noticed
that if (b,s) was a solution returning the correct PMNS matrix, (s,b) and (—b, —s) were ones as well.
Thus, the sample distribution of points could be restricted to one hemisphere and number of combinations
being checked could be reduced to (N choose 2)+N (less than N2, but still including combinations where
b =s) (fig. 4).

By further restricting the sampled points to only the slices seen on the two spheres in figure 4, the
density could be increased and solutions that fit the actual PMNS matrix error bounds (eqn. 18) could be
found.

2.1.3 Mass Difference Restrictions

The first step in including the masses was to verify the findings of the analytical result: The mass eigen-
values had no dependence on Mp and a linear dependence on mg/, (fig. 5). The PMNS solutions were
independent of the two paramaters.

From the analytical solution, it was known that the mass difference imposed a relation of b-s ~ 0.7
between the two unit vectors. This was verified by choosing a single point for b and then seeing which
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Figure 4: Unit sphere regions for b and s that return correct PMNS matrix. Points were restricted to the
hemisphere y» > 1 and only unique combinations were looked at. Padding of +0.02 has been taken as
the “error” for every element of the known PMNS matrix to admit more solutions during this exploratory
scan. The red stars show the expected values of b and s taken from [14].

points for s would return the correct mass eigenvalues. The pattern of points that were admitted formed
a ring on the unit sphere around the point b and had an average dot product of 0.7055.

This restriction was first applied loosely so an ideal value for the gravitino mass could be set. Looking
at mass histograms for |Amg %, and |Amg;|?, setting mg 2 ~ 4.85 keV maximized the number of b and s
returning correct mass differences (fig. 6).

2.1.4 Solution of the 5x5 Matrix

A final, very dense scan was performed with points sampled from near the PMNS solutions and combi-
nations were excluded based on their dot products. This could be done before the taxing diagonalization
procedure, speeding up analysis. The solutions for the b and s vectors satisfied the errors on the PMNS
matrix and those on the mass squared differences (eqns. 18, 17, fig. 7). The final values below are the
mean of those solutions:

0.35 —0.07
b=| 08 |,s= 0.40 ,mp = 0eV, mg =0.0089eV, mz = 0.0498 eV (30)
0.44 0.91

These results are close to those of the analytical solution for the 5-by-5 matrix (eqn. 24). One note is that
the mass eigenstates still depend on the choice of the gravitino mass (ms/;) which can vary slightly and
admit some valid solutions.
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Figure 5: Mass eigenstates of M and their dependence on gravitino mass (b and s fixed to an arbitrary
PMNS solution [fig. 4]). my is zero (with some numerical fluctuations), my and mg depend linearly on

mg/a.
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Figure 6: Histogram of |Amy;|?, and |[Ams;|? from a 2d scan over b and s where b-s = 0.7 + 0.1 and

mge =~ 4.85keV.
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Figure 7: Solutions for b and s that return the correct PMNS matrix and mass squared differences. The
red stars represent the expected locations of the vectors.
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2.2 The 7x7 Mass Matrix

As with the 5-by-5 equation, the Majorana masses on the diagonal of the 7-by-7 mass matrix were set to
zero (eqn. 26). Unlike the 5-by-5 matrix, there are scenarios where all 3 of the SM neutrino masses are

NON-Zero.
053 Ygv Yo Ggv Gro

Yiv 0 0 Mp 0

M=| Yo 0 0 0 M (31)
Glv M, 0 0 0
Hv 0 Mp, 0 0

Searches for lepton flavour violating  — e + v and u — e conversion around nuclei put a lower bound
on the messenger scale (figure 1 in [15]). To keep the SM neutrino mass states on the order of eV, the
gravitino mass was increased to the MeV scale to keep mg/s/A3, the same.

Ay ~ 1000 TeV

Mp =~ 1TeV (32)
m3/2 ~ 1 MeV
The first test performed was to verify the analytic solution from [15] in the case that w =t = 0. The

numerical result agrees with the analytical result for this special case, where b and s take on the 5-by-5
results with a massless eigenvalue (eqn. 30):

0.35 —0.07
b= 083 |,s=] 040 (33)
0.44 0.91

Scanning over sets where more than two vectors were free to vary on the unit sphere proved computa-
tionally taxing. It was not feasible at a high enough point density to admit solutions. If b and s (or w and
t) were set to the 5-by-5 result and one other left to vary, many solutions were found indicating that there
was little dependence on the free vector (explained later by the partial analytical solution). If at least one
vector was set to be zero, there would be one zero mass eigenvalue. With four non-zero vectors there were
three non-zero mass eigenvalues but there was no simple dependence between vector values and the mass
eigenvalue results such as the dot product in the 5-by-5 case.

2.2.1 The O Matrix

It was clear that the 7-by-7 system would be very under-constrained as there were 10 parameters (2 x 4
parameters per unit vector, Ay and mg/2) to only five constraints (three mixing angles and two mass-
squared differences). From initial testing, it was determined that the 7-by-7 case with all four vectors
being non-zero could not be solved (in a reasonable time) with only numerical methods. It was decided
to attempt a hybrid analytical-numerical solution, with the analytical method providing a more efficient
framework to finding valid 7-by-7 mass matrices (fig. 8). The intuition was that a partial analytical
solution would provide some domain restrictions, like the dot product in the 5-by-5 matrix.
Assuming that the diagonal terms in M (eqn. 31) are zero, the ¢?=° coefficient of the Weinberg operator
is [13]
cd=5 _ 11'3/2

m
= (bs" +sb pwitl ptw’) =
M M

0 (34)
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Figure 8: A flowchart explaining benefits of the intermediate O matrix step on computations and combi-
natorics. The first step is to find the set of O matrices that return the correct PMNS and mass differences
upon diagonalization for a specific ratio of mgz//A%,. The second is then to find a combination of bwst
vectors mapping to one of those valid matrices.

where O is a 3-by-3 symmetric matrix

011 012 013
O12 Oz Oas (35)
013 023 033
with elements
011 = 2(()181 + wltl) 012 = 6182 + Slbg + ’LUth -+ tlwg
022 = 2(5282 + wgtg) 013 = 6183 + 8163 + ’LUltg + t1w3 (36)
033 = 2<b383 + ’LU3t3) 023 = 1)283 + 8263 + w2t3 —+ t2w3

This matrix O can then be diagonalized by the the PMNS matrix to return SM neutrino mass states

m3/2222 mA 0 0
A—2U1_T,MNS OUpyns =04 Og=1[ 0 my 0 (37)
M 0 0 ms

As a corollary, if a symmetric matrix O can be found such that its eigenvectors form the PMNS matrix,
and whose eigenvalues follow the allowed mass-squared differences, any set of bwst vectors that create O
as per equation 34 would also solve the 7-by-7 matrix (fig. 8). This subset of “valid O matrices” is what is
provided as an intermediate step in the diagonalization process. The computational step of checking the
eigenvectors and eigenvalues of O is much less intensive compared to that for the 7-by-7 matrix as it is
only a 3x3 matrix with entries of order 1.

Using the known PMNS matrix, equation 37 can be used to rewrite O to remove some of the linear
dependence among its terms. The zero elements in O4 can be used to write the O;4; elements as a function

011 0.72011 — 5.1022 + 4.4033 —1.3011 -+ 6.3022 — 4.9033
O = 0.72011 — 5.1095 + 4.4033 Oa9 —2.3011 4+ 7.5099 — 5.2033 (38)
—1.3011 + 6.3022 — 4.9033 —2.3011 + 7.5022 — 5.2033 033

Trying to incorporate the mass squared differences to rewrite O was too unwieldy as they are non-linear
for mq1, mo, ms.

14



The mass eigenstates from equation 37 can be rewritten in terms of the diagonal elements as well

A2
m /MUle =0.11 011 + 5.2 022 —4.3 033
3/2
2
m ; Ung =3.3 011 —12.0 022 + 10.0 033 (39)
3/2
Al
m3/21)2 ms = 8.1 022 —24 011 —4.7 033

The limits of the space spanned by O;; € R? depends on the bwst vectors. The shape of this subspace
was found by plotting O matrices generated from random sets of bwst vectors and it reveals that the
diagonal elements O;; must have a one-norm less than or equal to 4, creating an outer boundary that was
used when searching for valid O matrices.

|O11] + |Ogz| + [Os3] = [|Oyl[1 < 4

The off-diagonal terms around bounded within ||O;;|| < 2.

A 3D scan using the diagonal entries of O within the regions of ||O||1 < 4 was performed to find the
set of valid solutions for O;; within the uncertainty on the PMNS matrix and the mass differences. Scans
were performed three times, for different ratios of mg/,/A3,: gravitino masses of 500 keV, 1 MeV and 2
MeV were used with Ay, = 1000 TeV held constant throughout.

The scans were preformed in two steps. The first was a coarse scan over the entire space of O;; that
admitted a small number of solutions (blue points in fig. 10). A Bézier curve was visually fit to those
points to define a “spine” for the second scan which was performed in a radius around that curve. The
second scan provided a dense set of solutions for valid O matrices (fig. 11).

The set of O that returned correct PMNS matrices upon diagonalization was independent of the
gravitino mass and messenger scale which is expected from equation 37. The diagonalization produced a
single set of valid mass eigenvalues for all gravitino masses (fig. 12). As the gravitino mass was increased,
the elements of valid O were linearly scaled towards the origin O;; o< A3, /mg/» (fig. 11).

2.2.2 Finding bwst Vectors

Finding bwst vectors mapping to valid O matrices is still a difficult problem. The space of matrices that
can be made from bwst vectors as per equation 34 has a volume of

4 4
([|04]11 <4) x (||Osz5 < 2]) = 543 X §7T23 ~ 2860

There are bwst vectors can map to a number of O matricies equal to np ~ 2860 x 10" (entries rounded
to the r-th decimal place). Only a small subset of these matrices are valid O. For r = 1, np ~ 10%. That
is a reasonable number to scan over using random bwst combinations drawn from the unit sphere. In
actuality, the distribution is not uniform, but for 107 — 10® random bwst combinations, a few do lead to
valid O.

When rounding the O matrices to 7 > 2, the number of possible O matricies is n, ~ 10°. This is too
high to find the small number of valid O by drawing random bwst vectors from the entire unit sphere.
The unit vector distributions are limited to a spherical cap of the unit sphere of radius ¢ centered on the
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O, returning valid mass differences 0ii returning valid PMNS matrix

2
O 0) o

22

Figure 9: Left: Values for ||O;|| that satisfy the mass differences (eqn. 39). Right: Points satisfying Upnns
(1/100th of points shown)(eqn. 18, 38).

—=N

\\ h_”_ﬂﬁ_ﬂd”"_”_“”_

Figure 10: Visually fitting a cubic Bézier curve (control points marked in purple) to points along the
intersection of the the graphs in figure 9 (small points in blue). The fourth Bézier control point lies on
the surface defined by ||O;||1 < 4 (grey plane). A copy of the graph has also been projected onto the x-y

plane below. Made in Desmos 3D.
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O matricies returning valid U and A(mz) for different gravitino masses

PMNS

A =1000 TeV
0, 500keV - 0, 500keV
0, 1MeV - 0 1Mev
0, 2MeV/ - Oj2Mev
O;PMNSOnly . Oy PMNS Only

Figure 11: Two views of O matrix elements (diagonal, ||O;;|| and off-diagonal ||O;,||) for various values of
gravitino mass (red - 500 keV, black - 1 MeV, blue 2-MeV). The curves satisfy both the mixing parameters
(eqn. 18, 38) and the maximum norm limit. The green points show the valid points only looking at the
norm limit and Upyng, which are independent of gravitino mass.
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Figure 12: The set of valid neutrino mass eigenstates corresponding to all 3 curves in figure 11. Points
within the grey region fall within the upper bound on the sum of neutrino masses found by the DESI
collaboration of > m, < 0.064 [10].
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Table 1: bwst vectors that produce a valid O and 7-by-7 matrices with one massless SM neutrino (m; ~ 0)
for various gravitino masses.

b w S t
0.64 —0.43 —0.29 —0.57
mg/2 = 500 keV 0.34 —0.81 —0.71 —0.81
—0.69 —0.40 —0.64 —0.14
0.04 0.61 0.73 0.00
mgp = 1 MeV 0.62 0.15 0.46 —0.56
0.78 —0.78 —0.51 —0.83

Table 2: bwst vectors that produce a valid O and 7x7 matrices with 3 massive SM neutrinos (m; # 0) for
various gravitino masses.

b w S t
0.23 —0.06 —0.14 —0.12
mg/2 = 500 keV —0.77 —-0.97 0.66 —0.93
—0.60 —0.23 —0.74 —0.34
0.75 0.96 0.66 —0.53
Mgy = 1 MeV 0.52 0.25 0.62 —0.48
0.41 —0.12 0.43 —0.70

vector found for r = 1 (see w and t plots in fig. 13 with = 0.05 rad). By “perturbing” the vectors found
in the previous step in this way, it is possible to converge on bwst vectors creating a valid O matrix. This
can be repeated for higher values of r, but it was found that » = 3 was sufficient to produce bwst vectors
that lead to valid 7-by-7 matrices.

For cases where only a small subset of valid O matrices were being targeted (such as matrices with an
eigenvalue close to zero), this method would still have difficulty converging. The chance of finding valid
bwst vectors could be increased by changing the vector distribution caps on the fly. If a set of bwst
vectors created an O matrix closer (in R® euclidean distance) to the targeted O than the current vectors
defining the caps, the caps would be recentered on the new vectors. This method found more solutions
much faster as the distribution cap centers converged to the valid set of bwst vectors.

Once bwst vectors were found that matched a valid O matrix in the third decimal place, they could be
verified in the 7-by-7 matrix (tbl. 1, 2). The techniques presented above; letting the vectors be “perturbed”
in a cap, and shifting the center of the caps, worked well to find more bwst vectors that produced valid
7-by-7 matrices (fig. 13).

In all of these results, there was less of a constraint on the w and t vectors than the b and s ones (fig.
13). The wt vectors would have solutions in the entire space they could be perturbed in, whereas the b
vector solution took on a narrower shape that extended to the edges of the perturbation region. The set
of bwst vectors for a specific set of neutrino masses was not unique either (tbl. 1, row 1 and tbl. 3).

The technique used to shift the perturbation area also works in the 7-by-7 matrix to find solutions with
slightly different parameters. The bwst vectors admitting solutions were recorded for incremental changes
in different parameters such as mg/, or Ay, or to converge to specific mass eigenvalues.

Increasing the gravitino mass caused the mass eigenstates to grow heavier (fig. 14). This was more
pronounced for eigenstates without a massless neutrino. The b and s vectors changed much more than
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Table 3: Another set of bwst vectors that produce a valid O and 7-by-7 matrices with one massless SM
neutrino (m; ~ 0) for mg/, = 500 keV

b w s t
0.11 —0.51 0.70 0.04
0.73 -0.12 0.67 0.63
0.68 0.85 0.24 0.78

‘ . m,, = 500keV, m1=-001 ev‘

0.15
055
02
o 06 Ny
0.25
0865
03
0.8
08
0.95
1
o 0.05
b w. 105 015 0.1 0.05

0.68
066 o'

0.64 095 01 -0.05 0
0.62 L : t

-0.08 -0

012 014 016 018 2
-]
1

Figure 13: Valid bwst vectors for mgz,; = 500 keV and m; ~ —0.01 eV. Combinations of vectors within a
spherical cap of # = 0.05 rad from the bwst vectors in table 2 (row 1) were verified. Sets of bwst vectors
are grouped by colour and sorted by b;. The grey surface is a portion of the unit sphere.

19



Neutrino Mass Eigenstates with Changing m
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Figure 14: Changing mass eigenstates for incremental changes to gravitino mass. One track started with
my ~ 0 eV, the other with m; ~ 0.01 eV. Black points are the mass eigenstates shown in figure 12 for

reference. Points within the grey region fall within the upper bound on the sum of neutrino masses found
by the DESI collaboration of ) m, < 0.064 [10].
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Figure 15: Changing of bwst vector solutions for incremental changes to gravitino mass, shown on a unit
sphere. (1) starting with m; ~ 0 eV, (2) starting with m; ~ 1 eV (fig. 14).
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the w or t ones as the gravitino mass increased (fig. 15). Increasing the messenger scale caused the mass
states to scale in an inverse manner with them getting lighter and the same trends were seen in the bwst
vectors.

3 Conclusion

The model investigated in this analysis explains the mass of the SM neutrinos by using the Inverse Seesaw
Mechanism to add SUSY particles to the neutrino mass matrix. The mass matrices presented depend on
unit vectors which characterize the decay structure of the SUSY particles to SM particles, the messenger
scale and, the gravitino mass. Valid mass matrices can be diagonalized by the PMNS matrix and return
SM neutrino mass states matching the mass squared differences and mass sum limit set by DESI [9, &, 10].

This analysis used numerical methods in MATLAB to explore two theories: one adding two new parti-
cles, the bino and singlino (5-by-5 matrix case) and then adding two more particles, the wino and tripletino
(7-by-7 matrix case). The 5-by-5 case is solvable analytically and requires that one SM neutrino be mass-
less. The numerical result was verified the analytical solution. The 7-by-7 case is an underconstrained
system with 10 free variables: four unit vectors (b, w, s, t), the messenger scale and the gravitino mass.
There remain five constraints: the three mixing angles and two mass squared differences. Notably, the
7-by-7 case does not require one of the SM neutrinos to be massless but could not be solved analytically
without major simplifications.

To solve the 7-by-7 mass matrix, a method was developed that could find sets of bwst vectors for
specific SM mass states using a set of symmetric matrices O as an intermediate step. Sets of solutions
were found for various gravitino masses and different eigenstates. Next, starting with a previous solution for
the 7-by-7 matrix, the unit vectors could be perturbed repetitively to find bwst vectors for a precise mass
eigenvalue, or to see how the bwst vectors were affected by changing the gravitino mass and messenger
scale. It was found that the b and s unit vectors typically affect the solution much more than the w and
t ones. When solutions were perturbed, wt took on a greater range of values and were less constrained.
Moreover, while incrementally changing the gravitino mass, the bs vectors moved much more on the unit
sphere than the wt.

It was discovered that there are multiple sets of bwst that produce the same neutrino mass states.
In particular there is no “smoking gun” set of vectors that produced a massless neutrino. If there was,
an observation of the specific branching ratio given by b for a potential bino/wino decay in a collider
experiment could confirm a massless neutrino. If leptonic branching ratios in bino decays are measured
in the LHC it would be possible to include them as a strong constraint in this model. Meanwhile, the
solutions presented in this analysis can be used in MadGraph, a tool for simulating collider signals for
Standard Model or Beyond Standard Model theories of particle physics. It is hoped that some of these
solutions may lead to other interesting signatures that could be searched for at the Large Hadron Collider.

Low-energy /cosmological constraints continue to narrow the solution space further. The recent DESI
publication on the upper limit on the sum of neutrino masses restricts the number of valid mass eigenstates
significantly in the 7-by-7 model. There is a smaller band still which still includes the possibility of a
massless SM neutrino. Results very recently released by the KATRIN experiment show that they have
placed an upper limit of m, < 0.45 eV on the heaviest neutrino mass with 90% confidence [11]. This
limit is far above the DESI limit, but future results from KATRIN are expected to push it lower, possibly
discovering the heaviest neutrino mass.
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