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Abstract 

The focal spot of an x-ray tube is the region of an x-ray machine at which the x rays are generated. The 
International Electrotechnical Commission (IEC) assigns numerical nominal focal spot values to the 
size of x-ray tube focal spots to ensure consistent measurement across different machines and 
manufacturers.  

Using pinhole imaging, the digital mapping of the focal spots by the Hamamatsu S11684-12 CMOS 
detector was evaluated to enhance the efficiency of measuring the nominal focal spot value in 
accordance with the IEC Standard 60336:2020. A key objective was to establish a clear reference for 
future testing by evaluating various combinations of imaging parameters such as enlargement, 
pinhole size, current, and exposure time - to determine which configurations reliably met IEC 
requirements. The criteria of the IEC include: a focal spot width at 15% of maximum intensity 
spanning at least 60 pixels, a signal-to-noise ratio (SNR) of at least 100, and a minimum of 200 signal 
levels between the background and maximum signal.  

Using MATLAB, fixed pattern noise from the detector's row-sequential readout was addressed and 
reduced through a matrix normalization technique. Two normalization methods were compared: 
averaging then normalizing (ATN) and normalizing then averaging (NTA), with NTA offering slightly 
superior noise reduction for smaller images. 

Additionally, a method for generating two line spread functions was developed to measure focal spot 
size. By averaging the focal spot width wise and height wise, the two line spread functions allowed 
for the measurement of focal spot width and height at 15% maximum intensity, as per IEC 
requirements. 

The measured nominal value for the large focal spot was 𝑓𝑊 = 1.5 and 𝑓𝐻 = 1.3.  

The measured nominal value for the small focal spot was 𝑓𝑊 = 0.7 and 𝑓𝐻 = 0.9.  

These values were inconsistent with the manufacturer’s serial plate which shows 𝑓(𝑙𝑎𝑟𝑔𝑒) = 1.2 and 
𝑓(𝑠𝑚𝑎𝑙𝑙) = 0.6. 

This work provides a practical framework to guide future evaluations and ensure consistent, IEC 
compliant measurements. 
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1.0  Introduction to X-ray Focal Spots and Nominal Values      

1.1 Background Information 
X-ray machines generate x-rays by accelerating electrons towards a metal anode using a high-voltage 
electric field, known as the accelerating potential or kilovoltage (𝑘𝑉).1 These electrons originate at 
the cathode, where a heated tungsten filament, powered by an electric current, releases electrons 
through thermionic emission. As the electrons accelerate, they form a moving beam of charge, 
known as the tube current, typically measured in milliamperes (𝑚𝐴). When the electron beam 
strikes the focal spot on the anode (usually an alloy of roughly 90% tungsten and 10% rhenium), the 
electrons undergo a sudden deceleration. This generates x-rays primarily through Bremsstrahlung 
(braking radiation), which occurs when the electrons are decelerated and deflected by the strong 
electric fields of the atomic nuclei in the tungsten (or other target material), converting their kinetic 
energy into electromagnetic radiation.2 The efficiency of Bremsstrahlung is relatively low for the 
electron energies in an x-ray tube—less than 1% of the electron’s kinetic energy is converted into x-
rays, while the remaining energy is converted into heat. Tungsten is the preferred material due to its 
high atomic number (74), which increases the likelihood of Bremsstrahlung. Also, its ability to 
withstand extreme temperatures, with a melting point of 3,422°C, make it ideal for handling the heat 
generated during x-ray production. 

Previous studies at Carleton University, under the guidance of Dr. Paul Johns, have contributed to the 
field of focal spot imaging. Eva Anderson evaluated the Hamamatsu S11684-12 CMOS detector, 
focusing on its practicality for imaging x-ray focal spots. Her work resulted in a focal spot size 
measurement that met IEC tolerance limits using the Hamamatsu detector.34 André Ramos Moreno 
developed a design for aligning detector, pinhole, and the x-ray focal spot, performing mathematical 
and numerical analyses to improve measurement accuracy. His design is a pinhole and detector 
stand, which will be useful in capturing higher-precision images when it is finished construction.5 
Building on the prior work done, this work aims to enhance the efficiency of producing focal spot 
measurements that meet the IEC's standards for medical imaging.  

Different focal spot sizes are necessary because they cater to various imaging applications. Different 
sizes allow for a balance between factors such as image resolution, heat dissipation, and exposure 
time. Smaller focal spots provide higher resolution but may limit the tube's capacity to handle high 
exposures. Larger focal spots allow for higher power outputs but reduce image sharpness.  

To ensure that an x-ray tube’s source is suitable for its intended application, its focal spot must be 
accurately characterized in accordance with industry standards. The International Electrotechnical 
Commission (IEC) mandates that each focal spot be assigned a nominal value for consistency 
across manufacturers and equipment type.6 

The effective focal spot size differs from its actual size, with the anode angle (𝜙) being crucial to this 
variation. Two anodes with the same actual focal spot size may have different effective focal spot 
sizes with a different anode angle 𝜙 (see Figure 1). A larger anode angle with a smaller actual focal 
spot may appear similar in size to a smaller anode angle with a larger actual focal spot. The effective 
focal spot size is what determines the nominal focal spot value.7 
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1.2 Objective 
The goal of this research is to develop a method for measuring the nominal value of a focal 

spot using the Hamamatsu digital detector. This method should consider the detector’s row-
sequential readout, detector blur, pinhole blur, enlargement, and the variables involved in producing 
radiographic images such as tube current, and exposure time. Taking all of this into account will 
provide a solid foundation for future research on focal spot imaging tailored to this detector.8 

   
Figure 2 - Labelled x-ray tube with a rotating anode. 

Figure 1 – The size of the effective focal spot depends on the angle of the anode. Although the small 
angle (𝜙1) anode and large angle (𝜙2) anode are struck by the same width electron beam, the effective 
focal spot size for the small angle anode (left) is smaller than for the anode with the larger angle (right). 
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Figure 4 - X-ray tube showing the filament which is heated to produce electrons. The filament 
is located within the focusing cup, which directs the electron beam towards the focal spot 

track on the anode disk. 

Figure 3 - Rotating anode with a tungsten / rhenium target disk. Most of the disk is 
Molybdenum, the circular track is the tungsten / rhenium alloy. X rays are generated when 

electrons from the cathode bombard the anode. 
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2.0  Theoretical Framework          

2.1 Pinhole Imaging 
A pinhole projects an inverted image from a light source onto a screen. The size of this image 

depends on the relative positions of the pinhole, the light source, and the screen. As the distance 
between the pinhole and the screen increases, the image becomes larger but also dimmer. This 
relationship is illustrated in Figure 5, where an increased pinhole-to-screen distance results in a 
larger but fainter image. The faintness arises because the same amount of light (represented by the 
coloured lines) is spread over a larger area. This behaviour describes photon fluence (Φ). 

 Φ =
# 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑎𝑟𝑒𝑎
 [1] 

 Since the number of photons passing through the pinhole remains constant if the source-to-pinhole 
distance does not change, increasing the screen distance causes the image to cover a larger area, 
reducing photon fluence and thus making the image dimmer.  

The distance between the light source and the 
pinhole also affects the image. The intensity of light 
from a point source follows the inverse-square law, 
meaning it decreases as the inverse square of the 
distance from the source: 

 𝜙 =
𝑃

4𝜋𝑟2
  [2] 

where 𝜙 is the fluence rate of the light, 𝑃 is the power 
of the light source, and 𝑟 is the distance from the 
source. As the source-to-pinhole distance 
decreases, more photons pass through the pinhole, 
increasing image brightness. However, for fixed 
detector locations, this also enlarges the image, 
causing the photons to be distributed over a greater 
area, reducing their concentration and making the 
image dimmer.  

Conversely, increasing the source-to-pinhole distance reduces image enlargement if the source to 
detector distance is kept constant, but also decreases brightness due to the inverse-square law. This 
trade-off between image size and brightness is a fundamental characteristic of pinhole imaging. For 
math and simplicity, the described distances will be denoted as variables: 

𝑑1 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑜 𝑝𝑖𝑛ℎ𝑜𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

𝑑2 = 𝑝𝑖𝑛ℎ𝑜𝑙𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒  

𝑑3 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 

Thus, 𝑑3 = 𝑑1 +𝑑2 

Figure 5 - Comparing enlargement and fluence for 
changing pinhole-to-detector distances. 

Figure 6 - Labelled distances. 
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As previously mentioned, changing the relative distances within the set up affects the size of the 
projected image. This enlargement is calculated using the following relationship: 

 𝐸 =
𝐻𝑖

𝐻𝑜
 , [3] 

where 𝐻𝑖  is the size of the image, and 𝐻𝑜 is the size of the object. The image size and object size can 
be calculated algebraically, using 𝑑2 and 𝑑3 as: 

 𝐸 =
𝑑2

𝑑3−𝑑2
 . [4] 

As 𝑑2→ 𝑑3, the enlargement factor 𝐸 →∞. In this case, the image becomes excessively magnified 
and blurred, while the reduced photon fluence makes the image too dim to be distinguishable. 
Conversely, as 𝑑2 → 0, the enlargement factor approaches zero (𝐸 → 0), causing the image to shrink 
until it is just the pinhole aperture filled with light.  

2.2 Blur and Detector Resolution 
Pinhole imaging introduces two primary sources of blur: pinhole blur and detector blur. Each type of 
blur is influenced by the geometric relationships between the pinhole, the source, and the detector. 

2.2.1 Pinhole Blur 

The blur caused by the finite size of the pinhole is known as the pinhole’s point spread function (PSF). 
Since a physical pinhole has a finite diameter 𝑝, light rays from a single point of the focal spot spread 
out, forming a small, blurred circle on the detector. The size of this blur in the detector plane, 𝐵𝑝′, 
depends on both the pinhole diameter 𝑝 and the distance 𝑑2 between the pinhole and the detector: 

 𝐵𝑝
′ =

𝑝𝑑3

𝑑3−𝑑2
 [5] 

To express the blur in the source plane, 𝐵𝑝, we divide by the enlargement fact 𝐸 = 𝑑2

𝑑3−𝑑2
, yielding: 

 𝐵𝑝 =
𝐵𝑝
′

𝐸
=

𝑝𝑑3

𝑑3−𝑑2
×
𝑑3−𝑑2

𝑑2
= 𝑝 (

1

𝐸
+1) , [6] 

where, as 𝑑2 increases, it enlarges the image while also spreading out the pinhole blur over a larger 
area. This effectively reduces the blur in the source plane. Decreasing the pinhole size 𝑝 also reduces 
blur but at the cost of lower light throughput, which would make the image dimmer. 
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2.2.2 Detector Resolution 

Detector resolution refers to the smallest detail that can be distinguished by the detector and is 
typically measured in line pairs per millimeter (𝑙𝑝/𝑚𝑚), where one line pair consists of one black line 
and one white line. In digital detectors, resolution is influenced by pixel size, as smaller pixels allow 
for better spatial resolution. However, in detectors using a scintillator, light spread within the 
scintillator causes blurring before reaching the pixels, which can limit the resolution independently 
of pixel size. Higher 𝑙𝑝/𝑚𝑚 values correspond to better resolution, as more line pairs can be resolved 
within one millimeter. Enlarging the image does not improve the detector's spatial resolution, but it 
does improve the image resolution by spreading the image over a larger area, allowing finer details to 
become more distinguishable. 

 

Figure 7 shows a resolution test strip placed directly on the Hamamatsu detector. The test strip 
consists of multiple labeled sections, each corresponding to a specific line pairs per millimeter 
(𝑙𝑝/𝑚𝑚) value. Each section contains exactly five line pairs (four black lines and five white spaces 
with a black background). Figure 8 provides a magnified view of the 5 and 8 𝑙𝑝/𝑚𝑚 sections. While 
each section contains only five line pairs, the lp/mm value represents how many of these pairs would 
fit within a millimeter if the pattern were extended.  

Figure 9 shows three additional zoomed-in views of the test strip, each captured at a different angle 
relative to the detector's pixel pattern. The test strip, which was placed horizontally along the 
detector, meaning its line pairs are vertical along the detector, seems to show the best resolution; 
this is most likely due to the row-sequential readout of the detector.  

 

 

 

Figure 8 - Zoomed in resolution test strip showing 
distinct line pairs (5 and 8) per millimeter. 

Figure 7 - Resolution test strip placed directly on the Hamamatsu detector. The 
test strip is placed vertically, but the line pairs are horizontal along the detector. 
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Figure 9 - Zoomed in resolution test strip images taken with the Hamamatsu S11684-12 detector. 
The images show the strip from 16 𝑙𝑝/𝑚𝑚 to 20 𝑙𝑝/𝑚𝑚. The strip was placed diagonally (top), 

horizontally (middle), and vertically (bottom) along the detector. 
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2.2.3 Detector Blur 

Detector blur arises from three main factors: pixel size, scintillator light spread, and noise. Each of 
these components influences the sharpness and clarity of the captured image. 

The pixel size of the detector strongly influences the spatial resolution, but also contributes to blur 
by limiting the smallest detail that can be accurately captured. The Hamamatsu detector uses a 
thallium-doped cesium iodide (𝐶𝑠𝐼(𝑇𝑙)) scintillator.9 When x-rays hit the scintillator, they are 
converted into visible light, which is then detected by the underlying sensor. This conversion process 
is not localized because light spreads by a small amount within the scintillator, causing the image to 
blur.  

The amount of light spread depends on the scintillator's thickness and material properties, with 
thicker scintillators producing more blur due to increased light diffusion.10 The 𝐶𝑠𝐼(𝑇𝑙) scintillator 
exhibits an afterglow of 0.3% at 100 𝑚𝑠,7 meaning a small residual emission of light persists briefly 
after exposure ends, which can further reduce image sharpness. 

Noise in the detector system arises from several sources, including fixed pattern noise and readout 
noise. Fixed pattern noise stems from variations in pixel responsivity, meaning that identical radiation 
intensities produce varying output signals across the detector. For the Hamamatsu detector, this 
variation is given as a sensitivity fluctuation of ± 30%, meaning the pixel response can vary by up to 
30% from the average value. Readout noise, on the other hand, results from fluctuations during 
signal transfer out of the chip and can introduce additional blur to the image.  

The combination of these three effects blurs the image, reducing the ability to resolve fine details. 
While the intrinsic blur caused by the detector remains constant, magnification increases the 
number of pixels the image covers, allowing for finer details to become more distinguishable. Thus, 
detector blur (𝐵𝑑) depends on the intrinsic blur of the detector, 𝛼, and the enlargement of the image:  

 𝐵𝑑 =
𝛼

𝐸
 [7] 

2.2.4 Total Blur 

The total blur of the image is a combination of blur from the pinhole and blur from the detector. Since 
the two sources of blur are independent, their combined effect is calculated by adding them in 
quadrature. Adding the blurs directly would overestimate their total effect, so each contribution is 
squared to represent its area of influence, then summed, and the square root of this sum gives the 
total blur (𝐵𝑡𝑜𝑡) as a function of enlargement: 

 𝐵𝑡𝑜𝑡(𝐸) = √𝐵𝑝
2 +𝐵𝑑

2 = √(
𝑝

𝐸
+ 𝑝)

2

+ (
𝑎

𝐸
)
2

 [8] 

Simplifying Equation 8 gives us the total blur of the image in the focal spot plane: 

 𝐵𝑡𝑜𝑡(𝐸) =
√𝑎2+𝑝2(𝐸+1)2

𝐸
 [9] 

We seek the enlargement, 𝐸,  for which blur is minimized. Setting  𝜕𝐵𝑡𝑜𝑡
𝜕𝐸

= 0 and solving for 𝐸:  



12 
 

 𝜕𝐵𝑡𝑜𝑡

𝜕𝐸
= −

𝑝2𝐸+𝑝2+𝛼2

𝐸2√𝑎2+𝑝2(𝐸+1)2
 [10] 

 −
𝑝2𝐸+𝑝2+𝛼2

𝐸2√𝑎2+𝑝2(𝐸+1)2
= 0 [11] 

 𝐸 =
−𝑝2−𝛼2

𝑝2
 [12] 

With 𝐸 = 𝑑2

𝑑3−𝑑2
  

 𝑑2 = 𝑑3 (1 +
𝑝2

𝛼2
) [13] 

To minimize the total blur, apparently the pinhole must be behind the focal spot, which is impossible, 
thus from Equation 9, the most accurate focal spot image will have its blur minimized by taking 𝐸 to 
be as large as possible. 

2.3 Flat Field Correction 
Flat Field Correction (FFC) is the standard calibration technique for digital imaging, which mitigates 
a detector’s pixel-to-pixel variation and illumination irregularities.11 It compensates for differences in 
pixel gains and dark currents, where dark current is a small random generation of electrons within 
the depletion region of the detector. Flat fielding an image will allow for a uniform signal to produce 
a uniform output. In an ideal FFC-corrected image, the background values will be uniform, and the 
imaged object will be clearly represented.  

FFC works independently on each pixel of a detector. The process requires three raw radiographic 
inputs, where raw denotes that the images have not been processed. The three raw images are: a raw 
x-ray image (X), a dark image (D), and a gain image (G). In the case of pinhole imaging, X is a pinhole 
image. The total procedure follows: 

 𝐹𝐹𝐶 =
(𝑋−𝐷)⟨𝐺−𝐷⟩ 

(𝐺−𝐷)
 [14] 

The (𝑋 −𝐷)  term removes the background, including contributions from detector noise and dark 
current, leaving just the relevant signal from the x-ray image. Then each pixel is multiplied by the 
average ⟨(𝐺 − 𝐷)⟩, which represents the average pixel sensitivity across the detector after 
accounting for the background. Multiplying by this average value ensures each pixel is properly 
scaled. Finally, dividing by the corrected gain (𝐺 − 𝐷) ensures the individual pixel corrections are 
normalized and consistent across the image. As a result of this process, lower-level pixels are 
brightened, and higher-level pixels are darkened. This is shown in Figure 10. 
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2.4 Row Sequential Readout and Normalization 
Detectors with row-sequential readout, such as complementary metal-oxide semiconductor 
(CMOS) sensors, often exhibit significant variations in readout timing between rows compared to the 
timing between columns. Row-sequential readout is a method where image data are extracted from 
the sensor line by line, progressing from one end of the sensor to the other. In sensors with 
1000 ×1500 pixel array (like the Hamamatsu detector), this means that the data from the first pixel 
in the top left are read out 1000 pixels before the pixel directly below that. The time difference 
between rows is much larger than between columns, leading to visible variations in row intensity. 
This can result in images with noticeable differences, such as alternating dark and light rows.  

Since the Hamamatsu sensor employs a row-sequential readout, this introduces the need for a row-
specific normalization factor to correct for row-dependent variations in pixel values. 

Some detectors (like the Hamamatsu detector) also contain shielded pixels, which are used in their 
built-in automatic correction systems. To ensure proper normalization from the raw image data (from 
manual mode), a mask is applied to eliminate the values of the shielded pixels from the manual 
calculation.9 

There will be multiple acquisitions captured and processed to produce an averaged image. Denoting 
 𝑛𝐴𝑟,𝑐  for the 𝑛𝑡ℎ matrix of 𝑅 rows and 𝐶 columns, each with pixel values 𝑛𝑎𝑟,𝑐, a formula can be 
produced to apply a row normalization. 

Figure 10 - Comparison of a raw pinhole x-ray image, and the same image after Flat Field 
Correction. The focal spot is almost completely obscured in the raw image. 
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The average pixel value for row 𝑟 is calculated as: 

  𝑛(𝐴𝐶)𝑟 =
1

𝐶
∑  𝑛𝐴𝑟,𝑐
𝐶
𝑐=1  , [15] 

where (𝐴𝐶) refers to the fact that the matrix A has been averaged over its columns. Thus, 𝑛(𝐴𝐶)𝑟 is a 
column vector of size 𝑅 × 1.  The average pixel value 𝑛⟨𝑎⟩ of matrix 𝑛 is: 

  𝑛⟨𝑎⟩ =
1

𝑅
∑  𝑛(𝐴𝐶)𝑟
𝑅
𝑟=1 . [16] 

Each row-specific normalization constant  𝑛𝑑𝑟 will be calculated using: 

  𝑛𝑑𝑟 =
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)𝑟
 . [17] 

• If  𝑛(𝐴𝐶)𝑟  >   𝑛⟨𝑎⟩ →    𝑛𝑑𝑟  <   1 
• If  𝑛(𝐴𝐶)𝑟 <   𝑛⟨𝑎⟩ →    𝑛𝑑𝑟  >   1 
• If  𝑛(𝐴𝐶)𝑟 =   𝑛⟨𝑎⟩ →    𝑛𝑑𝑟  =   1 

This can be expressed as: 

  𝑛𝐷 =

[
 
 
 
 
 
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)1
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)2

⋮
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)𝑅]
 
 
 
 
 

= [

 𝑛𝑑1
 𝑛𝑑2
⋮

 𝑛𝑑𝑅

] , [18] 

where 𝑛𝐷 is an 𝑅 × 1 column vector with each normalization factor  𝑛𝑑𝑟 scaling the corresponding 
row 𝑟 in the matrix. Using MATLAB’s element-wise multiplication, the normalized matrix 𝑛𝐴𝑛𝑜𝑟𝑚 is 
given by: 

  𝑛𝐴𝑛𝑜𝑟𝑚 =  𝑛𝐴𝑟,𝑐   .∗   𝑛𝐷 , [19] 

where 𝑛𝐴𝑟,𝑐  is the original 𝑅 × 𝐶 matrix, and 𝑛𝐷 is the 𝑅 × 1 column vector. The element-wise 
multiplication performed in MATLAB can be expressed mathematically as the Hadamard product.12  
The Hadamard product (denoted by ⊙) takes in two matrices and multiplies the corresponding 
entries of the two matrices. For example, (𝐺 ⊙𝐻)= 𝑄 

 [
3 5 7
4 9 8

] ⊙ [
1 6 3
0 2 9

] = [
3 × 1 5 ×6 7 ×3
4 × 0 9 ×2 8 ×9

] [20] 

Or, in the case of the row normalization: 

 

[
 
 
 
 
 
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1]

 
 
 
 
 

⊙

[
 
 
 
 
 
1
2
3
4
5
6]
 
 
 
 
 

=

[
 
 
 
 
 
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6]

 
 
 
 
 

 [21] 

Thus, 𝐴𝑛,𝑛𝑜𝑟𝑚 is given by: 

  𝑛𝐴𝑛𝑜𝑟𝑚 =  𝑛𝐴𝑟,𝑐  ⊙  𝑛𝐷 [22] 
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  𝑛𝐴𝑛𝑜𝑟𝑚 = [

 𝑛𝑎1,1 ⋯  𝑛𝑎1,𝐶
⋮ ⋱ ⋮

 𝑛𝑎𝑅,1 ⋯  𝑛𝑎𝑅,𝐶
]⊙ [

 𝑛𝑑1
⋮

 𝑛𝑑𝑅

] =

[
 
 
 
 
 𝑛𝑎1,1 𝑛𝑑1 ⋯  𝑛𝑎1,𝑐  𝑛𝑑1 ⋯  𝑛𝑎1,𝐶  𝑛𝑑1

⋮ ⋱   ⋮                    ⋮       
 𝑛𝑎𝑟,1 𝑛𝑑𝑟

⋮
 𝑛𝑎𝑅,1 𝑛𝑑𝑅

⋯
 
⋯

 𝑛𝑎𝑟,𝑐  𝑛𝑑𝑟
⋮

 𝑛𝑎𝑅,𝑐  𝑛𝑑𝑅

⋯
⋱
…

 𝑛𝑎𝑟,𝐶  𝑛𝑑𝑟
⋮

 𝑛𝑎𝑅,𝐶  𝑛𝑑𝑅]
 
 
 
 

 [23] 

This approach leads to two possible methods for multiple radiographic images. Method one, where 
each image is normalized before averaging them, and method two, where the images are averaged 
into one image, and then normalized.  

Method one: normalized and then averaged (NTA), using Equation 23, is given by: 

 𝑁𝑇𝐴 =
1

𝑁
∑ [ 𝑛𝐴𝑛𝑜𝑟𝑚]
𝑁
𝑛=1  [24] 

Method two: averaged and then normalized (ATN), is given by: 

 𝐴𝑇𝑁 = [
1

𝑁
∑  𝑛𝐴𝑟,𝑐
𝑁
𝑛=1 ]⊙(𝐷𝑁) [25] 

Where (𝐷𝑁) is calculated using the averaged matrix (𝐴𝑁)𝑟,𝑐. 

The difference between a FFC image and a normalized FFC image (using ATN) is illustrated below. 
The normalized image clearly reduces the black and white stripes from the row sequential readout 
of the detector.  

Figure 11 - Comparison of a FFC image (left), and the same image after using method two of normalization, 
averaging then normalizing (right). This uses the same image as Figure 10. 
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3.0  Methods and Materials          

3.1 Experimental Set up 
 The detector used was the Hamamatsu S11684-12 
complementary metal-oxide semiconductor (CMOS) area image 
sensor with a row-sequential readout. It consists of 1000 × 1506 
pixels, each measuring (20× 20)𝜇𝑚2, resulting in an effective 
image size of (20× 30)𝑚𝑚2 when ignoring the shielded pixels. 
The shielded regions are divided into upper and lower sections: 
the lower section comprises the bottom three rows, each with 
1000 columns, while the upper section includes the top three 
rows and two triangular areas extending 114 pixels down and 114 
pixels inwards on each side due to the detector’s shape. Figure 
12 illustrates the detector’s dimensions. The sensor supports 
USB 2.0 connectivity and required a powered USB for operation.  

The powered USB used during testing was the 5-meter StarTech 
USB 2.0 Active Extension Cable (model #USB2AAEXT5M). The 
powered USB connected the detector to the lab’s Windows 10 
computer, where the Hamamatsu S11684/S11685 Image Acquisition Application was used to 
capture images. This software is designed to evaluate the Hamamatsu S11684-12 detector and 
supports both manual and automatic capture modes. Due to the limited photon fluence from the 
pinhole, all images were captured using manual mode.  

A custom case was 3D-printed by a colleague, Jack Rubio, to securely hold the detector. Its 
dimensions, shown in Figure 13, were designed to fit the detector snugly, relying on gravity to keep it 

Figure 12 - Hamamatsu S11684-12 detector 
pixel layout. 

Figure 13 - Side, top, and front view of the 3D printed Hamamatsu S11648-12 detector case. 
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in place. Green painter’s tape was applied to prevent any 
shifting within the case. Additionally, screw holes in the 
bottom of the case allowed it to be secured to a larger 
structure, preventing tipping. 

The x-ray generator was the Picker GX550, a single-phase 
generator commonly used for medical imaging. It 
includes adjustable controls for exposure time, mA, and 
kVp. Paired with the generator was the Picker Dunlee PX 
412A x-ray tube (insert model #DU304), with 
specifications shown in Figure 14. The x-ray tube has two 
focal spots: a small focal spot with a nominal value of 0.6 
and a large focal spot with a nominal value of 1.2.  

The imaging setup utilized RaySafe (formerly Fluke Biomedical) x-ray pinholes.13 Available were a 30 
𝜇𝑚 pinhole (model 07–613) and a 75 𝜇𝑚 pinhole (model 07–617), both with diaphragms composed 
of a 90:10 gold-platinum alloy. A DVD stand, the Atlantic Onyx 28 DVDs Blurays Tower Wall Mounted 
Or Free Standing (Matte Black) 1331 was chosen by Eva Anderson to hold the pinhole for imaging.14 
It has a height of 50.8 𝑐𝑚, a width of 21.59 𝑐𝑚, and a depth of 9.52 𝑐𝑚. The shelves are spaced 
roughly 19 𝑚𝑚 apart, with slight variations between 18 − 20 𝑚𝑚. The shelves adequately 
accommodated the pinhole, which was affixed to a CD disk case using green painters tape, as 
illustrated in Figure 15.  

To ensure alignment with the central axis, Dr. Tong Xu provided a hollow metal pipe (Figure 16) that 
he modified by machining one end flat to allow it to stand upright. Radiographs were then captured 
with the pipe placed directly on the detector. To achieve proper alignment, the detector was adjusted 
until the radiographic image of the pipe displayed a perfect circle. If the image appeared thicker in 
one direction, the detector was repositioned toward the thicker side of the pipe's radiographic 
projection to correct the misalignment. 

Figure 14 - X-ray Tube Serial Plate. 

Figure 15 - Pinhole placement using the DVD shelving unit. Front view (left) and top view (right) show the pinhole being 
aligned with roughly the centre of the stand. 
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3.2 Capturing a Radiographic Pinhole Image 
To capture a radiographic pinhole image using the Hamamatsu S11684-12 detector, the following 
procedure was performed: 

Device Setup:  

1. Connect all devices: 
• USB power cord 
• Detector to USB 
• USB to computer 

2. Turn on the computer and open the image 
acquisition software when all devices are plugged 
in.  

Software configuration: Navigate to Settings > Image Acquisition: 

I. Set Integration mode to “For X-ray image acquisition.” 
II. Deselect “Subtract the stored dark image for fast acquisition.”  

III. Select “Raw image” in the Image type dropdown. 
IV. Set Integration time to 1000 𝑚𝑠 and click “OK.” 

Detector Alignment:  

1. Position the detector in the DVD stand at the preferred height (𝑑3).  
2. Turn on the x-ray generator and set milliamperes, exposure time, and accelerating potential. 
3. Align the detector with the central axis using the hollow metal pipe.  
4. Secure the detector with tape and record the distance to the focal spot (𝑑3). 

Pinhole Placement and Image Acquisition:  

5. Place the pinhole at 𝑑2 ≅ 10 𝑐𝑚 from the detector to increase the brightness of the image 
for alignment. 

6.  Spin the rotor, then click “Acquire Image” and immediately generate x-rays within the set 
integration time. If the focal spot cannot be seen, check pinhole alignment.  

Fine-Tune Pinhole Alignment:  

7. Adjust the pinhole height (𝑑2) in small increments to keep the pinhole centered in the image 
until the desired enlargement is reached.  

8. Measure its height relative to the detector (𝑑2), from the top of the pinhole to the top of the 
detector. 

9. Reduce the Integration time down to 500 𝑚𝑠 to minimize noise.  

Capture and Save Images: Acquire and save the following as 16-bit TIFFs: 

• 10 RAW pinhole images. 
• 10 RAW dark images. 
• 10 RAW gain images.  

Figure 16 - Hollow pipe front view (left) and top view (right). 
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Shutdown: Turn off the computer and the x-ray generator, and unplug all devices. 

 3.3 Measuring Nominal Value 
The focal spot measurement is performed using a custom MATLAB (R2024b) script 
(Nominal_Value_Finder.m, Appendix A.1) that applies FFC and row-sequential readout 
normalization to raw x-ray image data. The script outputs the focal spot dimensions (width and 
height) in both pixels and millimeters. 

Image Input and Preprocessing: The script (Appendix A.2) accepts three sets of 16-bit 𝑇𝐼𝐹 images: 

• Raw x-ray images 

• Raw dark images 

• Raw gain images 

Each image is converted into a 1000 × 1506 numerical 
array. A custom mask is applied to exclude shielded 
pixels from all subsequent calculations. 

The script (Appendix A.2.i) averages the input arrays 
to produce: 

• An averaged x-ray array 

• An averaged dark array 

• An averaged gain array 

The ATN technique (Equation 25) is applied to these 
averaged arrays. (Appendix B) 

Normalization and Output: A manual column selection 
function allows the user to exclude the focal spot 
region from row-wise normalization. This is performed 
by selecting a section from the averaged x-ray array 
and is then applied across the dark and gain arrays 
using the same selection. Flat field correction 
(Equation 14) is performed using the three averaged 
arrays, resulting in a corrected image array. This 
corrected array is saved as both a 𝑇𝐼𝐹 image and a 
𝑀𝐴𝑇 data file to preserve data integrity. 

The script (Appendix A.3) then automatically adjusts 
the window and level of the corrected array to produce 
a visually enhanced version (Figure 17). 

Focal Spot Analysis: The user provides input parameters: 

• Pinhole size 

Figure 17 - A fully normalized and FFC image of the Large focal 
spot. This image is not rotated or cropped, but is corrected for 

window and level. 
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• Distances 𝑑2 and 𝑑3 

Using the displayed image (Figure 17), the user 
selects a region of interest (ROI) containing: 

• The focal spot (now visible after 
correction and adjustment) 

• A background area big enough for 
comparison 

This ROI is cropped, and the user aligns the focal 
spot horizontally and vertically to simplify the 
procedure and calculations. The script applies the 
MATLAB 𝑖𝑚𝑟𝑜𝑡𝑎𝑡𝑒 function (using "nearest" 
interpolation) to perform the alignment, where the 
output pixel takes the value of the nearest input 
pixel without considering surrounding values. 

The user selects two additional ROIs (Figure 18) 
from the now cropped and rotated image: 

1. Focal Spot ROI: Encompassing the entire 
focal spot without excess background. 

2. Background ROI: Excluding the focal spot 
and occupying as large an area as 
possible. 

The script projects the aligned focal spot into 
horizontal and vertical intensity vectors to 
calculate its dimensions in both pixels and 
millimeters. Enlargement (𝛦) and total blur (𝛣𝑡𝑜𝑡) 
are computed and used to adjust these 
measurements. 

Final Output: The script outputs the corrected 
focal spot width and height measurements and 
prompts the user to save the final .𝑀𝐴𝑇 data file, 
concluding the analysis. The calculated 
dimensions can subsequently be converted into a 
nominal focal spot value. 

 

  

Figure 18 - Screenshot of the Focal Spot (top) and Background 
(bottom) ROI selection. These are the cropped and rotated 

versions of the image in Figure 17. 
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4.0  Analysis             

4.1 Matrix Analysis 
To compare the performance of the two normalization methods, NTA and ATN, a series of controlled 
tests were conducted. These tests were designed to assess each method’s ability to handle small 
fluctuations in an otherwise constant dataset. The objectives of these tests were as follows: 

• Minimizing row-wise deviations. 
• Reducing the impact of the deviations on the rest of the matrix after normalization. 
• Minimizing computation time. 

For the simplest test, three initial matrices  1𝐴𝑟,𝑐,  2𝐴𝑟,𝑐, and  3𝐴𝑟,𝑐 were established.  1𝐴𝑟,𝑐 was given 
a single fluctuation, but  2𝐴𝑟,𝑐 and  3𝐴𝑟,𝑐both contained only a constant value. The matrices were: 

                  1𝐴𝑟 ,𝑐  =  

[
 
 
 
 
𝟏𝟏 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 
 
 
 

   [26] 

  2𝐴𝑟,𝑐 =  3𝐴𝑟,𝑐 =

[
 
 
 
 
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 
 
 
 

  [27] 

The bolded number in 1𝐴 is the fluctuation. With these three matrices, ATN and NTA will be shown 
below. To follow the fluctuation’s effect on the rest of the matrix/matrices, if a number is affected by 
the fluctuation, the number will be in bold. 

Averaging, Then Normalizing (ATN) 

ATN can be calculated in five steps with each matrix having 𝑟 = 1 → 𝑅 = 5 rows, 𝑐 = 1 → 𝐶 =

5 columns, and 𝑛 = 1 → 𝑁 = 3 matrices.  

Step 1: Average over 𝑁, where (𝐴𝑁)𝑟,𝑐  will denote that the matrix 𝑛𝐴𝑟,𝑐  has been averaged over N: 

 (𝐴𝑁)𝑟,𝑐 =
1

𝑁
∑  𝑛𝐴𝑟,𝑐
𝑁
𝑛=1  [28] 

 (𝐴𝑁)𝑟,𝑐 =
1

3

[
 
 
 
 
𝟏𝟏 + 10+ 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10
10+ 10 + 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10
10+ 10 + 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10
10+ 10 + 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10
10+ 10 + 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10]

 
 
 
 

  [29] 

                  =   

[
 
 
 
 
𝟏𝟎.𝟑𝟑̅̅̅̅ 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 
 
 
 

                                                                                                      [30] 
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Step 2: Average each row using Equation 15, where (𝐴𝑁𝐶)𝑟 will denote that the matrix  𝑛𝐴𝑟,𝑐  has 
been averaged over both 𝑁 and 𝐶: 

 (𝐴𝑁𝐶)𝑟 =
1

𝐶
∑ (𝐴𝑁)𝑟,𝑐
𝐶
𝑐=1 =

1

5

[
 
 
 
 
𝟏𝟎.𝟑𝟑̅̅̅̅ + (4× 10)

5× 10
5× 10
5× 10
5× 10 ]

 
 
 
 

=

[
 
 
 
 
𝟏𝟎.𝟎𝟔𝟔̅̅̅̅  
10
10
10
10 ]

 
 
 
 

 [31] 

Step 3: Average the columns of (𝐴𝑁𝐶)𝑟 to determine the average pixel value, ⟨𝑎𝑁⟩, of the matrix 
(𝐴𝑁)𝑟,𝑐: 

 ⟨𝑎𝑁⟩ =
1

𝑅
∑ (𝐴𝑁𝐶)𝑟
𝑅
𝑟=1 =

1

5
(𝟏𝟎.𝟎𝟔𝟔̅̅̅̅ + 10+ 10+ 10 + 10) = 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅  [32] 

Step 4: Calculate the row-specific normalization constant (𝑑𝑁)𝑟 =
⟨𝑎𝑁⟩

(𝐴𝑁𝐶)𝑟
, where (𝑑𝑁)𝑟  uses the 

matrix (𝐴𝑁𝐶)𝑟  which was averaged over 𝑁: 

 (𝐷𝑁) =

[
 
 
 
 
 
 
 
 
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟔𝟔̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

10
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

10
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

10
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

10 ]
 
 
 
 
 
 
 
 

=

[
 
 
 
 
𝟎.𝟗𝟗𝟒𝟕𝟎𝟏𝟗𝟗
𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅ ]
 
 
 
 

  [33] 

Step 5: ATN can be calculated with Equation 25: 

          𝐴𝑇𝑁 =   (𝐴𝑁)𝑟,𝑐 ⊙(𝐷𝑁)                                                                                                                       [34] 

 𝐴𝑇𝑁 =  

[
 
 
 
 
𝟏𝟎.𝟑𝟑̅̅̅̅ 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 
 
 
 

⊙

[
 
 
 
 
𝟎. 𝟗𝟗𝟒𝟕𝟎𝟏𝟗𝟗
𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅ ]
 
 
 
 

                                                     [35] 

 𝐴𝑇𝑁 =  

[
 
 
 
 
𝟏𝟎.𝟐𝟕𝟖𝟓𝟖𝟕𝟐 𝟗.𝟗𝟒𝟕𝟎𝟏𝟗𝟗 𝟗.𝟗𝟒𝟕𝟎𝟏𝟗𝟗 𝟗. 𝟗𝟒𝟕𝟎𝟏𝟗𝟗 𝟗.𝟗𝟒𝟕𝟎𝟏𝟗𝟗
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ ]
 
 
 
 

  [36] 

Normalizing, Then Averaging (NTA) 

NTA can be calculated using the same notation as above.  
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Step 1: Average over the rows of each matrix using Equation 15, where  𝑛(𝐴𝐶)𝑟 will denote that the 
matrix  𝑛𝐴𝑟,𝑐has been averaged over 𝐶: 

  1(𝐴𝐶)𝑟 = 

[
 
 
 
 
𝟏𝟎.𝟐
10
10
10
10 ]

 
 
 
 

 [37] 

  2(𝐴𝐶)𝑟 =  3(𝐴𝐶)𝑟 = 

[
 
 
 
 
10
10
10
10
10]
 
 
 
 

                          [38] 

Step 2: Average the columns of each matrix using Equation 16 to determine the average pixel value, 
 𝑛⟨𝑎⟩, of each matrix: 

  1 ⟨𝑎⟩ = 𝟏𝟎.𝟎𝟒 [39] 

  2⟨𝑎⟩ =  3⟨𝑎⟩ = 10                         [40] 

Step 3:  Calculate the row-specific normalization constant  𝑛𝑑𝑟=
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)𝑟
, using Equation 17: 

  1𝐷 =

[
 
 
 
 
 
 
 
𝟏𝟎.𝟎𝟒

𝟏𝟎.𝟐
𝟏𝟎.𝟎𝟒

10
𝟏𝟎.𝟎𝟒

10
𝟏𝟎.𝟎𝟒

10
𝟏𝟎.𝟎𝟒

10 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
𝟎.𝟗𝟖𝟒𝟑𝟏𝟑𝟕𝟐

𝟏.𝟎𝟒
𝟏.𝟎𝟒
𝟏.𝟎𝟒
𝟏.𝟎𝟒 ]

 
 
 
 

 [41] 

  2𝐷 =  3𝐷 =

[
 
 
 
 
1
1
1
1
1]
 
 
 
 

 [42] 

Step 4: Normalize the individual matrices using Equation 22: 

  1𝐴𝑛𝑜𝑟𝑚 = 

[
 
 
 
 
𝟏𝟏 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 
 
 
 

  ⊙ 

[
 
 
 
 
𝟎. 𝟗𝟖𝟒𝟑𝟏𝟑𝟕𝟐

𝟏.𝟎𝟒
𝟏.𝟎𝟒
𝟏.𝟎𝟒
𝟏.𝟎𝟒 ]

 
 
 
 

                                                      [43] 

  1𝐴𝑛𝑜𝑟𝑚 =

[
 
 
 
 
𝟏𝟎.𝟖𝟐𝟕𝟒𝟓𝟏 𝟗.𝟖𝟒𝟑𝟏𝟑𝟕𝟐 𝟗. 𝟖𝟒𝟑𝟏𝟑𝟕𝟐 𝟗.𝟖𝟒𝟑𝟏𝟑𝟕𝟐 𝟗.𝟖𝟒𝟑𝟏𝟑𝟕𝟐
𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒
𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒
𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒
𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 ]

 
 
 
 

 [44] 
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   2𝐴𝑛𝑜𝑟𝑚 =  3𝐴𝑛𝑜𝑟𝑚 =

[
 
 
 
 
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 
 
 
 

⊙

[
 
 
 
 
1
1
1
1
1]
 
 
 
 

=

[
 
 
 
 
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 
 
 
 

       [45] 

Step 5: NTA can be calculated using Equation 24: 

 𝑁𝑇𝐴 = 1

𝑁
∑ [ 𝑛𝐴𝑛𝑜𝑟𝑚]
𝑁
𝑛=1 =

[
 
 
 
 
𝟏𝟎.𝟐𝟕𝟓𝟖𝟏𝟕 𝟗.𝟗𝟒𝟕𝟕𝟏𝟐 𝟗. 𝟗𝟒𝟕𝟕𝟏𝟐 𝟗.𝟗𝟒𝟕𝟕𝟏𝟐 𝟗. 𝟗𝟒𝟕𝟕𝟏𝟐
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ ]
 
 
 
 

  [46] 

Both methods produced similar results. Comparing Equations 36 and 46 by analyzing the specific 
fluctuation point 𝑟, 𝑐 = 1,1: 

The difference Δγ1,1 between the fluctuation and the normalized arrays are: 

 Δγ1,1,𝐴𝑇𝑁 = 11− 10.278587 = 0.𝟕𝟐𝟏413  [47] 

 Δγ1,1,𝑁𝑇𝐴 = 11− 10.275817 = 0.𝟕𝟐𝟒183 [48] 

where, since Δγ1,1,𝑁𝑇𝐴 > Δγ1,1,𝐴𝑇𝑁, NTA better minimizes the fluctuation at the deviation point. 
Similarly, analyzing the row of the fluctuation (𝑟 = 1) for values where 𝑐 ≠ 1, finds: 

 𝛥𝛾1,𝑐≠1,𝐴𝑇𝑁 = 10− 9.9470199 = 0.0𝟓𝟐𝟗801 [49] 

 𝛥𝛾1,𝑐≠1,𝑁𝑇𝐴 = 10− 9.9477124 = 0.0𝟓𝟐𝟐876 [50] 

Here, 𝛥𝛾1,𝑐≠1,𝑁𝑇𝐴 <  𝛥𝛾1,𝑐≠1,𝐴𝑇𝑁, indicating that NTA reduces the impact of the fluctuation on 
neighbouring values in the same row compared to ATN.  

As shown between Equations 36 and 46, non-deviated rows are affected by the same amount no 
matter the condition performed.  

The computational demands of NTA are higher than those of ATN, particularly as the number of input 
matrices increases. For cases with low 𝑁, NTA is preferred due to its superior ability to limit the 
propagation of fluctuations. The number of matrices involved in calculations for the purpose of 
nominal value measurements will be low, thus NTA is the preferred method.   

4.1 Analyzing the Effective Focal Spot Data  
As outlined in Section 1.2, the goal of this research is to measure the nominal value of the focal spots 
using the Hamamatsu detector in compliance with IEC requirements. The relevant IEC criteria 
(Section 6.3.2) include: 

a) The number of pixels over the 15% width of the line spread function is at least 60. 
b) The signal to noise ratio (SNR) must be greater than 100. 
c) The number of levels between the background level and maximum signal of the focal spot 

must be 200 or more. 
d) The image must be aligned within 1° of the reference axis.  
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Analysis of the images revealed several challenges: 

• The SNR consistently fell below 100, failing to meet IEC compliance. 
• Aligning the image within 1° of the reference axis was difficult, as the tube is enclosed in a 

metal case and not visible for exact measurements.  

Thus, only the tests that met both criteria (a) and (c) were selected for detailed examination. Tests 
that failed to meet these requirements, such as all the small focal spot tests using the 30 𝜇𝑚 pinhole, 
which all failed due to the signal level being below 200, were excluded from further analysis.  

To ensure consistency in testing and measurements, all pixel values from the passing tests were 
rescaled to a range of 0 to 65,000 (approximately 16-bits). This rescaling was performed only after 
verifying that the signal difference between the maximum intensity and the background met the IEC’s 
required 200 level difference. Line spread functions were then projected from these rescaled values 
and all evaluations are performed below. The passing test’s conditions are summarized in Table 1.  

Table 1 - Test Conditions and Enlargement Measurements of both the large focal spot (Tests A to F) and small focal spot 
(Tests G to J). 

Test 
Focal 
Spot 

(𝒅𝟑± 𝟏𝟎) 
𝒎𝒎 

(𝒅𝟐 ±𝟏𝟎) 
𝒎𝒎 

Enlargement 
(𝑬) 

Pinhole Size  
±𝟎.𝟎𝟎𝟓 𝒎𝒎 

Tube Current 
(𝒎𝑨) 

Exposure 
Time (𝒎𝒔) 

Accelerating  
Potential (𝒌𝑽𝒑) 

A Large 661 268 0.69 ± 0.024 0.030 200 100 60 
B Large 661 283 0.75 ± 0.028 0.030 200 100 60 
C Large 661 298 0.82 ± 0.032 0.030 200 100 60 
D Large 681 294 0.76 ± 0.028 0.075 200 100 60 
E Large 623 256 0.70 ± 0.027 0.030 200 200 60 
F Large 623 298 0.92 ± 0.040 0.030 200 200 60 
G Small 681 322 0.90 ± 0.035 0.075 50 200 60 
H Small 681 367 1.17 ± 0.053 0.075 100 100 60 
I Small 681 379 1.26 ± 0.059 0.075 50 200 60 
J Small 681 379 1.26 ± 0.059 0.075 100 200 60 

 

The enlargement factor (𝐸) is calculated using Equation 4. With its uncertainty propagated as 
follows: 

 𝜎𝐸 = √(
𝜕𝐸

𝜕𝑑3
𝜎𝑑3)

2

+ (
𝜕𝐸

𝜕𝑑2
𝜎𝑑2)

2

 [51] 

 𝜎𝐸 = √(
−𝑑2𝜎𝑑3
(𝑑3−𝑑2)2

)
2

+ (
𝑑3𝜎𝑑2

(𝑑2−𝑑3)2
)
2

 [52] 

where 𝜎𝑑3 and 𝜎𝑑2 represent the uncertainties in 𝑑3 and 𝑑2 respectively.  

Using the MATLAB scripts mentioned in Section 3.3, the tests from Table 1 output the corrected focal 
spot height and width measurements by calculating the total blur (𝐵𝑡𝑜𝑡) in the source plane from 
Equation 9. The detector blur 𝛼 is related to the spatial resolution 𝑅 in 𝑙𝑝/𝑚𝑚 by: 

 𝛼 =
1

2
×
1

𝑅
 [53] 



26 
 

where the factor of ½ accounts for halving the line pairs, ensuring 𝛼 is expressed in millimeters. From 

Figure 9, the resolution is approximately (18 ± 1) 𝑙𝑝

𝑚𝑚
, so the intrinsic blur of the detector can be 

calculated as: 

 𝛼± 𝜎𝛼 =
1

2∗18
± √(

−1

2(18)2
)
2

 = (0.028 ± 0.0015) 𝑚𝑚 [54] 

Table 2 provides pinhole dimensions and their uncertainties from RaySafe, which are incorporated 
into total blur calculations. 

Table 2 - Pinhole dimensions and their uncertainties. 

 

 

Propagating Equation 9 with the errors calculated above, the error on the total blur 𝜎𝐵𝑡𝑜𝑡 is calculated 
as: 

 𝜎𝐵𝑡𝑜𝑡 = √(
𝛼 𝜎𝑎𝑙𝑝ℎ𝑎

𝐸√𝑎2+𝑝2(𝐸+1)2
)
2

+ (
(−𝛼2−𝑝2(𝐸+1))𝜎𝐸

𝐸2√𝑎2+𝑝2(𝐸+1)2
)
2

+ (
𝑝(𝐸+1)2𝜎𝑝

𝐸√𝑎2+𝑝2(𝐸+1)2
)
2

 [55] 

where the total blur for each test is shown in Table 3. 

Table 3 – Calculated Total Blur and Uncertainty for each Test. 

Test Enlargement 
(𝑬) 

Pinhole Diameter 
(± 𝟎.𝟎𝟎𝟓) 𝒎𝒎 

Total Blur 
(𝒎𝒎) 

A 0.69 ± 0.046 0.030 0.083± 0.0109 
B 0.75 ± 0.050 0.030 0.079± 0.0105 
C 0.82 ± 0.055 0.030 0.074± 0.0101 
D 0.76 ± 0.050 0.075 0.175± 0.0128 
E 0.70 ± 0.050 0.030 0.082± 0.0109 
F 0.92 ± 0.065 0.030 0.069± 0.0096 
G 0.90 ± 0.058 0.075 0.161± 0.0115 
H 1.17 ± 0.078 0.075 0.141± 0.0100 
I 1.26 ± 0.085 0.075 0.136± 0.0096 
J 1.26 ± 0.085 0.075 0.136± 0.0096 

Model Diaphragm Dimensions (𝒎𝒎) 
07-613 0.030 ± 0.005 
07-619 0.075 ± 0.005 
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With the total blur and enlargement calculated for each test, the width (𝑊) and height (𝐻) of the 
focal spot can now be determined, including uncertainties. Using the MATLAB scripts (Section 3.3), 
the effective focal spot dimensions were determined by projecting intensity values along the width 
and height directions of the focal spot region to generate one-dimensional line spread functions 
(LSF). Some comparison LSFs are shown in Figures 19 and 20. 

 Figure 19 – Large Focal Spot: Test B (Top) and Test D (Bottom)  
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The number of pixels exceeding 15% of the maximum intensity was converted into physical 
dimensions using: 

 𝑊𝑒𝑓𝑓 = 𝑁𝑊 ×0.02 𝑚𝑚 [56] 

 𝐻𝑒𝑓𝑓 = 𝑁𝐻 × 0.02 𝑚𝑚 [57] 

where 𝑁𝑊 and 𝑁𝐻 represent the number of pixels covering the width and height of the focal spot, 
respectively. Since the detector has no explicit uncertainty on pixel size, it is reasonable to assume a 
margin of error of ± 0.5 𝜇𝑚 in each pixel. Adding an uncertainty onto the MATLAB script of ± 2 𝑝𝑖𝑥𝑒𝑙𝑠, 
the effective width and height uncertainties are calculated as follows: 

 𝜎𝑊𝑒𝑓𝑓 = √(0.005 ∗ 𝜎𝑁𝑊)
2
+ (𝑁𝑊 ∗ 𝜎𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒  )

2
 [58] 

 = √0.0001 + (𝑁𝑊 ∗ 0.002)2              [59] 

 𝜎𝐻𝑒𝑓𝑓 = √0.0001+ (𝑁𝐻 ∗ 0.002)
2                          [60] 

Figure 20 – Small Focal Spot: Test I (Top) and Test J (Bottom) comparison. 
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Table 4 - Pixel Coverage of the Focal Spot, Calculated in MATLAB. 

Test 𝑵𝑾±𝟐 𝒑𝒊𝒙𝒆𝒍𝒔 𝑵𝑯 ±𝟐 𝒑𝒊𝒙𝒆𝒍𝒔 𝑾𝒆𝒇𝒇(𝒎𝒎) 𝑯𝒆𝒇𝒇(𝒎𝒎) 

A 70 92 1.40± 0.14 1.84± 0.18 
B 75 101 1.50± 0.15 2.02± 0.20 
C 83 108 1.66± 0.17 2.16± 0.22 

D 82 111 1.64± 0.16 2.22± 0.22 

E 65 89 1.30± 0.13 1.78± 0.18 
F 82 107 1.64± 0.16 2.14± 0.21 
G 55 82 1.10± 0.11 1.64± 0.16 
H 64 96 1.28± 0.13 1.92± 0.19 

I 71 113 1.42± 0.14 2.26± 0.23 

J 69 119 1.38± 0.14 2.38± 0.24 

Equation 9 gives the blur in the focal spot plane, so the height and width will be calculated to the 
focal spot plane as well. Both the blur and enlargement can be calculated linearly in the focal spot 
plane as follows: 

 𝑊𝑙𝑖𝑛 =
𝑊𝑒𝑓𝑓

𝐸
− 𝐵𝑡𝑜𝑡   [61] 

 𝐻𝑙𝑖𝑛 =
𝐻𝑒𝑓𝑓

𝐸
−𝐵𝑡𝑜𝑡    [62] 

Alternatively, quadrature corrections were applied: 

 𝑊𝑞𝑢𝑎𝑑  = √(
𝑊𝑒𝑓𝑓

𝐸
)
2

− 𝐵𝑡𝑜𝑡
2  [63] 

 𝐻𝑞𝑢𝑎𝑑  = √(
𝐻𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2  [64] 

Given two separate ways to calculate the final value, the average of both corrections will be taken.  

Finally, the uncertainties on the linear width and height are: 

 𝜎𝑊𝑙𝑖𝑛 =
√(

𝜎𝑊𝑒𝑓𝑓

𝐸
)
2

+ (−𝜎𝐵𝑡𝑜𝑡)
2
+ (−

𝑊𝑒𝑓𝑓∗𝜎𝐸

𝐸2
)
2

 [65] 

 𝜎𝐻𝑙𝑖𝑛 =
√(

𝜎𝐻𝑒𝑓𝑓

𝐸
)
2

+ (−𝜎𝐵𝑡𝑜𝑡)
2
+ (−

𝐻𝑒𝑓𝑓∗𝜎𝐸

𝐸2
)
2

 [66] 

And the uncertainties on the quadrature width and height are: 

 𝜎𝑊𝑞𝑢𝑎𝑑 =

√
  
  
  
  
  

(

 
 𝑊𝑒𝑓𝑓∗𝜎𝑊𝑒𝑓𝑓

𝐸2√(
𝑊𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

 
 

2

+

(

 
 
−

𝐵𝑡𝑜𝑡∗𝜎𝐵𝑡𝑜𝑡

√(
𝑊𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

 
 

2

+

(

 
 
−

𝑊𝑒𝑓𝑓∗𝜎𝐸

𝐸3√(
𝑊𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

 
 

2

 [67] 
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 𝜎𝐻𝑞𝑢𝑎𝑑 =

√
  
  
  
  
  

(

 
 𝐻𝑒𝑓𝑓∗𝜎𝐻𝑒𝑓𝑓

𝐸2√(
𝐻𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

 
 

2

+

(

 
 
−

𝐵𝑡𝑜𝑡∗𝜎𝐵𝑡𝑜𝑡

√(
𝐻𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

 
 

2

+

(

 
 
−

𝐻𝑒𝑓𝑓∗𝜎𝐸

𝐸3√(
𝐻𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

 
 

2

 [68] 

These final widths and heights provide a corrected calculation of the effective focal spot size, 
accounting for blur and enlargement. The results are shown in Table 5. 

Table 5 - Corrected width and height measurements of the large and small focal spots. 

Test 𝑾𝒆𝒇𝒇(𝒎𝒎) 𝑯𝒆𝒇𝒇(𝒎𝒎) 𝑾𝒍𝒊𝒏(𝒎𝒎) 𝑯𝒍𝒊𝒏(𝒎𝒎) 𝑾𝒒𝒖𝒂𝒅(𝒎𝒎) 𝑯𝒒𝒖𝒂𝒅(𝒎𝒎) 

A 1.40 ± 0.14 1.84± 0.18 1.95 ± 0.24  2.58 ± 0.32 2.03± 0.23  2.67 ± 0.28 
B 1.50 ± 0.15 2.02± 0.20 1.92 ± 0.24   2.61 ± 0.32 2.00 ± 0.22   2.69 ± 0.28 
C 1.66 ± 0.17 2.16± 0.22 1.95± 0.24 2.56 ± 0.32 2.02± 0.22 2.63 ± 0.28 
D 1.64 ± 0.16 2.22± 0.22 1.98± 0.26 2.74 ± 0.35 2.15± 0.23 2.92 ± 0.31 
E 1.30 ± 0.13 1.78± 0.18 1.77± 0.23 2.46 ± 0.31 1.86± 0.21 2.54 ± 0.27 
F 1.64 ± 0.16 2.14± 0.21 1.72± 0.22 2.26 ± 0.29 1.79± 0.20 2.33 ± 0.25 
G 1.10 ± 0.11 1.64± 0.16 1.06± 0.15 1.66 ± 0.22 1.21± 0.14 1.82 ± 0.20 
H 1.28 ± 0.13 1.92± 0.19 0.95± 0.13 1.50 ± 0.20 1.08± 0.12 1.63 ± 0.17 
I 1.42 ± 0.14 2.26± 0.23 0.99± 0.14 1.66 ± 0.22 1.12± 0.13 1.79 ± 0.19 
J 1.38 ± 0.14 2.38± 0.24 0.96± 0.13 1.75 ± 0.23 1.09± 0.12 1.88 ± 0.19 

The signal-to-noise ratio (SNR) is calculated using the focal spot mean ⟨𝐹𝑆⟩ and the standard 
deviation of the background region, 𝜎𝐵𝐺: 

 𝑆𝑁𝑅 =
⟨𝐹𝑆⟩

𝜎𝐵𝐺
±√(

[𝑆𝑇𝐷𝑀]𝐹𝑆

𝜎𝐵𝐺
)
2

+ (−
⟨𝐹𝑆⟩

𝜎𝐵𝐺
2
[𝑆𝐸]𝐵𝐺)

2

 [69] 

where the uncertainty on the mean focal spot value is [𝑆𝑇𝐷𝑀]𝐹𝑆, calculated using the standard 
deviation of the mean formula: 

 [𝑆𝑇𝐷𝑀]𝐹𝑆 =
⟨ 𝐹𝑆⟩𝑠𝑡𝑑

√𝑁
  [70] 

with 𝑁 being the sample size. The uncertainty on the standard deviation of the background, [𝑆𝐸]𝐵𝐺, 
is calculated using the standard error of the standard deviation formula: 

 [𝑆𝐸]𝐵𝐺 =
𝜎𝐵𝐺

√2𝑁−2
 [71] 

 where 𝑁 is the sample size. The 𝑆𝑁𝑅 values are shown in Table 6.  
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Table 6 - Calculated Signal-to-Noise Ratio values. 

Test ⟨𝑩𝑮⟩ ±𝝈𝑩𝑮  [𝑺𝑬]𝑩𝑮 ⟨𝑭𝑺⟩± [𝑺𝑻𝑫𝑴]𝑭𝑺 SNR 
A (24.0± 6.9) × 103 ±0.02× 103 (49.7 ± 0.2) × 103 7.18± 0.03 
B (24.9± 7.2) × 103 ±0.02× 103 (46.2 ± 0.2) × 103 6.41± 0.03 
C (24.9 ±  7.3) ×103  ±0.03× 103 (47.3 ± 0.1) × 103 6.47± 0.03 
D (10.8± 2.7) × 103 ±0.01× 103 (42.4 ± 0.2) × 103 15.7± 0.07 
E (13.4± 3.8) × 103 ±0.01× 103 (39.7 ± 0.2) × 103 10.57± 0.06 
F (13.9± 4.0) × 103 ±0.01× 103 (42.0 ± 0.2) × 103 10.44± 0.06 
G (12.8± 4.7) × 103 ±0.01× 103 (37.8 ± 0.2) × 103 8.02± 0.06 
H (14.0± 4.2) × 103 ±0.02× 103 (38.0 ± 0.2) × 103 8.95± 0.06 
I (13.5± 4.0) × 103 ±0.02× 103 (38.0 ± 0.2) × 103 9.60± 0.06 
J (12.2± 4.2) × 103 ±0.01× 103 (37.8 ± 0.2) × 103 8.89± 0.05 

 

The calculations and analysis presented throughout this section allow for a detailed analysis on each 
changing variable:  

• Pinhole Size 
• Enlargement 
• Exposure Time 
• Tube Current 

Pinhole Size  

From Figure 19, the primary variable between Test B and Test D was the pinhole diameter. The 
increased smoothness observed in the LSF of Test D may be attributed to this difference. The larger 
75 𝜇𝑚 pinhole used in Test D inherently produces more geometric blur, which smooths out fine 
details and results in a smoother LSF. This larger aperture also allows more x-rays to pass through, 
improving the SNR. In contrast, the 30 𝜇𝑚 pinhole used in Test B reduces blur and provides a sharper, 
seemingly more accurate depiction of the focal spot’s spatial distribution. However, the smaller 
aperture also restricts photon throughput, decreasing the SNR. The SNR of Test D is 15.7± 0.07, 
while the smaller pinhole reduced the SNR of Test B to only 6.41± 0.03. 

Although these values fall well below the IEC requirement of an 𝑆𝑁𝑅 ≥  100, they remain sufficient 
for spatial analysis. Therefore, the smaller pinhole is preferable when higher spatial resolution is 
required, provided the resulting images still satisfy the IEC criteria of at least 200 signals between the 
maximum and background, as well as a width at 15% maximum intensity covering at least 60 pixels. 

Exposure Time 

The effect of exposure time is demonstrated by comparing Test A (100 𝑚𝑠) and Test E (200 𝑚𝑠). As 
expected, the longer exposure time resulted in an improved SNR, increasing from 5.28  ±  0.03 in Test 
A to 7.35  ±  0.04 in Test E, likely due to greater photon accumulation. This SNR increase, by a factor 
of approximately 1.39, closely matches the theoretical prediction of √2 ≅ 1.41 for Poisson statistics, 
where signal increases linearly with exposure time but noise increases with the square root of signal. 
This supports the expectation that longer integration times improve image quality by increasing the 
dominance of true signal over random fluctuations.  
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It is worth noting that the highest SNR was observed in Test D (15.7  ±  0.07), which used a larger 
pinhole, emphasizing that both exposure time and pinhole size influence signal strength. In contrast, 
Test B, changing only the pinhole size, had the lowest SNR at 6.41  ±  0.03. Comparisons between 
Test A and Test E, and Test B and Test D, suggest that while exposure time does improve both spatial 
resolution and SNR, the pinhole size has a more significant impact on both SNR and spatial 
dimensions than exposure time alone. 

Enlargement 

Tests A, B, and C varied only by the 
enlargement factor, with values of 0.69±
0.02, 0.75± 0.03, and 0.82 ± 0.03, 
respectively. From Table 3 and Figure 21, as 
expected, greater enlargement reduced the 
total blur. A similar trend was observed 
between Tests G and I. Test G, with an 
enlargement of 0.90± 0.06, had a total blur 
of (0.161± 0.012) 𝑚𝑚, while Test I, with an 
enlargement of 1.26± 0.06, showed a total 
blur of (0.126± 0.01) 𝑚𝑚.  

The final corrected measurements of the 
focal spot’s width and height remained 
consistent across varying enlargement levels 
(Table 5), suggesting that enlargement has a 
minimal influence on the corrected focal spot 
dimensions compared to other varying 
factors.  

Tube Current 

Tests I and J differed only in tube current, with Test I conducted at  50 𝑚𝐴 and Test J at 100 𝑚𝐴. 
Theoretically, increasing the tube current should slightly increase the focal spot size due to 
electrostatic repulsion among the increased electron population. However, the results from Tests I 
and J do not show conclusive evidence of this relationship, as Test I has a larger width but a smaller 
height than Test J. This variation is most likely due to statistical fluctuations rather than experimental 
factors such as detector or pinhole misalignment or variations in filament temperature. 
Consequently, the effect of the tube current on the focal spot size remains inconclusive and warrants 
further investigation. 

 

 

 

Figure 21 - Total Blur as a function of Enlargement. The orange 
points corresponding to the 75-micron pinhole, and the blue 

points correspond to the 30-micron pinhole. The blur 
decreases as enlargement increases. 
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4.3 Nominal Value Analysis 
The IEC provides a table (Section 7.3.2, Table 3) titled “Maximum permissible values of focal spot 
dimensions for nominal focal spot values”, where the nominal focal spot value is assigned by using 
the width and length of the measured focal spot in millimeters.  Values from the table are reproduced 
in Table 7.  
Table 7 - IEC table for Maximum permissible values of focal spot dimensions for nominal focal spot values.  

Nominal Focal Spot 
Value 

Focal Spot dimensions, 
Maximum permissible values 

𝑚𝑚 
f Width Length 

0.5 0.75 1.10 
0.6 0.90 1.30 
0.7 1.10 1.50 
0.8 1.20 1.60 
0.9 1.30 1.80 
1.0 1.40 2.00 
1.1 1.50 2.20 
1.2 1.70 2.40 
1.3 1.80 2.60 
1.4 1.90 2.80 
1.5 2.00 3.00 
1.6 2.10 3.10 
1.7 2.20 3.20 

Using Table 7, the nominal focal spot values are found using the widths and heights from Table 5.  

Table 8 - Nominal Focal Spot Values consistent with measured dimensions. 

The averages of the linear and quadrature width and height measurements for both the large and 
small focal spots are presented in Table 9. Based on these averaged dimensions, a nominal focal 
spot value was assigned using the values from Table 7.  

 

Test 𝑾𝒍𝒊𝒏(𝒎𝒎) 𝑯𝒍𝒊𝒏(𝒎𝒎) 𝒇𝑾𝒍𝒊𝒏
 𝒇𝑯𝒍𝒊𝒏  𝑾𝒒𝒖𝒂𝒅(𝒎𝒎) 𝑯𝒒𝒖𝒂𝒅(𝒎𝒎) 𝒇𝑾𝒒𝒖𝒂𝒅

 𝒇𝑯𝒒𝒖𝒂𝒅 

A 1.95 ± 0.24  2.58± 0.32 1.5 1.3 2.03 ± 0.23  2.67 ± 0.28 1.6 1.4 
B 1.92 ± 0.24   2.61± 0.32 1.5 1.4 2.00 ± 0.22   2.69 ± 0.28 1.5 1.4 
C 1.95 ± 0.24 2.56± 0.32 1.5 1.3 2.02± 0.22 2.63 ± 0.28 1.4 1.4 
D 1.98 ± 0.26 2.74± 0.35 1.5 1.4 2.15± 0.23 2.92 ± 0.31 1.7 1.5 
E 1.77 ± 0.23 2.46± 0.31 1.3 1.2 1.86± 0.21 2.54 ± 0.27 1.4 1.3 
F 1.72 ± 0.22 2.26± 0.29 1.3 1.2 1.79± 0.20 2.33 ± 0.25 1.3 1.2 

G 1.06 ± 0.15 1.66± 0.22 0.7 0.9 1.21± 0.14 1.82 ± 0.20 0.9 1.0 
H 0.95 ± 0.13 1.50± 0.20 0.7 0.7 1.08± 0.12 1.63 ± 0.17 0.7 0.9 
I 0.99 ± 0.14 1.65± 0.22 0.7 0.9 1.12± 0.13 1.79 ± 0.19 0.8 1.0 
J 0.96 ± 0.13 1.75± 0.23 0.7 0.9 1.09± 0.12 1.88 ± 0.19 0.7 1.0 
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Figure 22 - Example graph of a measured point (Test F) corresponding to the IEC’s nominal values. This is for 
the large focal spot’s height, measured linearly. 

This  

Table 9 - Averaged Large and Small Focal Spot Nominal Values. 

Finally, the linear and quadrature values were averaged together for both width and height, and large 
and small focal spots. The resulting corrected averages were then used to assign final nominal focal 
spot values using Table 7. These are shown in Table 10. 

Table 10 - Corrected and averaged focal spot nominal values for both the large and small focal spots. 

Focal Spot 𝑾 (𝒎𝒎) 𝑯 (𝒎𝒎) 𝒇𝑾 𝒇𝑯 
Large Average 1.93 ± 0.26 2.58± 0.31 1.5 1.3 
Small Average 1.07 ± 0.14 1.72± 0.21 0.7 0.9 

 Figure 22 illustrates how the measured focal spot height for a test point (Test F) is interpreted relative 
to the IEC's nominal focal spot values. The blue line represents the IEC’s relationship between 
nominal focal spot values and their corresponding maximum permissible values, as outlined in Table 
7. This relationship is nonlinear due to the uneven spacing of maximum permissible values.  

Because the IEC provides no uncertainty for nominal values, plotting physical measurements 
directly against nominal values can be misleading. To resolve this, the measurement (black dot) and 
its uncertainty (magenta error bar) are projected onto the blue IEC curve. The corresponding y-value 
is the nominal focal spot value associated with the physical measurement. This effectively translates 
the physical measurement and its uncertainty (both only in the x-direction) into a nominal focal spot 
value with an implied uncertainty in the y-direction, where the uncertainty is represented by the 
shaded pink region. The dashed black lines denote the maximum permissible heights for nominal 
values 1.1 and 1.2, bracketing the zone in which the large focal spot is expected to lie (Figure 14). 
This enables a more visual comparison between measured data and IEC-defined tolerances. 

Figures 23–27 apply the same method to all focal spot measurements, with darker shaded areas 
being where uncertainties overlap. 

 

 

 

 

Focal Spot 𝑾𝒍𝒊𝒏(𝒎𝒎) 𝑯𝒍𝒊𝒏(𝒎𝒎) 𝒇𝑾𝒍𝒊𝒏
 𝒇𝑯𝒍𝒊𝒏  𝑾𝒒𝒖𝒂𝒅(𝒎𝒎) 𝑯𝒒𝒖𝒂𝒅(𝒎𝒎) 𝒇𝑾𝒒𝒖𝒂𝒅

 𝒇𝑯𝒒𝒖𝒂𝒅 

Large Average 1.88 ± 0.24  2.54 ± 0.32 1,4 1,3 1.97 ± 0.22  2.63 ± 0.28 1,5 1,4 

Small Average 1.01 ± 0.14   1.65 ± 0.22 0,7 0,9 1.14 ± 0.13   1.79 ± 0.19 0,8 0,9 
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Figure 23 - Large Focal Spot Corrected Height Measurements. 
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Figure 24 - Large Focal Spot Corrected Width Measurements. 
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Figure 25 - Small Focal Spot Corrected Height Measurements. 
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Figure 26 - Small Focal Spot Corrected Width Measurements. 
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5.0  Results and Discussion          

5.1 Results 
The Hamamatsu S11684-12 CMOS detector demonstrated sufficient resolution to measure the 

nominal focal spot size, achieving a resolution of (18 ± 1) 𝑙𝑝

𝑚𝑚
, consistent with the manufacturer's 

specifications. The sharpest images were obtained when the line pairs were aligned vertically along 
the detector, as shown in Figure 9. In contrast, the lowest resolution was observed with the diagonal 
alignment. This was likely because the diagonal orientation projected the line pairs across both pixel 
dimensions (horizontal and vertical), effectively reducing the sampling density and making the line 
pairs less distinguishable from the pixel structure. 

Equation 12 showed that total blur in the object plane is minimized by maximizing the enlargement. 
While direct measurement of blur was not performed, this theoretical prediction is supported 
qualitatively by the observed improvements in image sharpness and nominal measurement 
accuracy as enlargement increased, as shown in Figure 21, as well as Figures 23 – 27. 

The matrix analysis found that both ATN and NTA were effective at normalizing fluctuations caused 
by the detector’s row-sequential readout. Although NTA slightly outperformed ATN in limiting the 
propagation of fluctuations to neighboring pixels, the difference between the two methods was 
minimal. The key observation is that both methods significantly outperformed the manufacturer’s 
flat field correction, as shown in Figure 11. In this experiment, only a subset of the 1500 × 1000 
image was of interest, allowing specific regions to be allocated for row normalization. This is 
something that is not feasible with the FFC approach, which attempts to correct the entire image 
uniformly. 

Table 11 – Comparing the effects of the fluctuations on the specific deviation point, as well as how it affects the row its in.  

Method Effect on Fluctuation 
𝚫𝛄𝟏,𝟏 

Effect on Row 
𝜟𝜸𝟏,𝒄≠𝟏  

ATN 0.721 0.0529 
NTA 0.724 0.0522 

Of all variables tested, pinhole size, exposure time, and enlargement had the most significant impact 
on measurement precision. Increasing the enlargement consistently reduced image blur, while using 
a smaller pinhole and longer exposure time yielded the most accurate focal spot measurements. 

The averaged measured nominal values for the large focal spot were 𝑓𝑊 = 1.5 and 𝑓𝐻 = 1.3. The 
averaged measured nominal values for the small focal spot were 𝑓𝑊 = 0.7 and 𝑓𝐻 = 0.9. These 
results deviate from the manufacturer’s reported values of 𝑓(𝑙𝑎𝑟𝑔𝑒) = 1.2 and 𝑓(𝑠𝑚𝑎𝑙𝑙) = 0.6.  

Based on the above findings, the most accurate measurements were likely those using the smallest 
pinhole, longest exposure time, and greatest enlargement. These were Test F for the large focal spot, 
and Tests I and J for the small focal spot: 
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Table 12 – Most accurate test conditions and corresponding parameters. 

Test 
Focal 
Spot 

(𝒅𝟑± 𝟏𝟎) 
𝒎𝒎 

(𝒅𝟐 ±𝟏𝟎) 
𝒎𝒎 

Enlargement 
(𝑬) 

Pinhole Size  
±𝟎.𝟎𝟎𝟓 𝒎𝒎 

Tube Current 
(𝒎𝑨) 

Exposure 
Time (𝒎𝒔) 

Accelerating  
Potential (𝒌𝑽𝒑) 

F Large 623 298 0.92 ± 0.040 0.030 200 200 60 
I Small 681 379 1.26 ± 0.059 0.075 50 200 60 
J Small 681 379 1.26 ± 0.059 0.075 100 200 60 

Table 13 – Corresponding nominal values derived from Table 12 measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test 𝑾𝒍𝒊𝒏(𝒎𝒎) 𝑯𝒍𝒊𝒏(𝒎𝒎) 𝒇𝑾𝒍𝒊𝒏
 𝒇𝑯𝒍𝒊𝒏  𝑾𝒒𝒖𝒂𝒅(𝒎𝒎) 𝑯𝒒𝒖𝒂𝒅(𝒎𝒎) 𝒇𝑾𝒒𝒖𝒂𝒅

 𝒇𝑯𝒒𝒖𝒂𝒅 

F 1.72 ± 0.22 2.26± 0.29 1.3 1.2 1.79± 0.20 2.33 ± 0.25 1.3 1.2 

I 0.99 ± 0.14 1.65± 0.22 0.7 0.9 1.12± 0.13 1.79 ± 0.19 0.8 1.0 
J 0.96 ± 0.13 1.75± 0.23 0.7 0.9 1.09± 0.12 1.88 ± 0.19 0.7 1.0 

Figure 27 - Linear measurements corresponding to their nominal focal spot dimensions based on Table 13. 
The shaded regions show how measurement uncertainty propagated into nominal value uncertainty. 
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Figure 28 - Quadrature measurements used for the same purpose, with corresponding data from Table 13. 
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5.2 Discussion 
The NTA (normalizing-then-averaging) method proved more effective than the ATN (averaging-then-
normalizing) method in reducing row-specific noise caused by the detector’s row-sequential 
readout. This reduction is crucial for focal spot measurements, as reliable pixel values are essential 
for accurate LSF projections. By normalizing each matrix before averaging, NTA minimizes structured 
noise and produces more consistent results. That said, both methods perform similarly overall and 
are significantly better than the manufacturer’s FFC. A key advantage of NTA and ATN is that the 
normalization factors are calculated using selected regions on either side of the focal spot, extending 
from the top to the bottom of the image, ensuring accurate background correction without relying on 
the focal spot itself. This targeted approach allows for more precise normalization of row-dependent 
fluctuations, unlike the manufacturer’s FFC, which applies a uniform correction across the entire 
image and does not account for localized image structure. 

Despite this improvement, noise from the detector that is independent of row readout  - such 
as electronic noise, fixed pattern noise, scattered radiation, and scintillator light spread - remains a 
challenge. These types of noise are intrinsic to the detector's design and operation and are difficult 
to eliminate entirely. The most effective way to mitigate such noise is through averaging over multiple 
images, as this reduces random fluctuations and enhances signal consistency.  

Future work should explore the effect of processing larger numbers of raw, dark, and gain images 
after employing the NTA method to the Hamamatsu S11684-12 detector. Testing with varying 
numbers of averaged images (e.g., 10, 20, or 30) would help determine the number of images needed 
to achieve negligible background noise differences. This approach could potentially address the SNR 
issue, as obtaining a pinhole image with an SNR greater than 100 is challenging, if not impossible. 

The custom detector case built for the Hamamatsu S11684-12 detector proved reliable and 
facilitated easier measurements. A combination of Jack Rubio’s detector case (Figure 13), Eva 
Anderson’s DVD stand (Figure 15), and Tong Xu’s hollow pipe (Figure 16) allowed the detector to be 
aligned to within a small angle relative to the reference axis. However, the exact degree of alignment 
could not be confirmed, and potential misalignment of the x-ray tube might have introduced 
inaccuracies in some measurements. 

Challenges in maintaining alignment were noted. Attaching the case to the bottom of the DVD stand 
enabled movement of the entire stand for alignment, rather than just adjusting the detector itself. 
Aligning the pinhole and detector gradually as 𝑑2 changed was essential. Starting with the pinhole at 
𝑑2 ≅ 10 𝑐𝑚, the image of the focal spot was centered on the detector, but at 𝑑2 ≅ 20 𝑐𝑚, the image 
shifted toward the edge. Around 𝑑2 ≅ 30 𝑐𝑚, the image no longer appeared on the detector. 
Repeated attempts to realign the pinhole with the reference axis revealed that achieving proper 
alignment required moving the detector after positioning the pinhole at greater distances. This 
suggests that the reference axis was not truly vertical. Future work should prioritize improved 
methods to identify and align with the reference axis to ensure proper x-ray beam geometry. 
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Two IEC requirements were consistently able to be met during testing: 

• At least 60 pixels spanned the 15% width of the LSF. 
• The pixel value range between the background and focal spot maximum was ≥  200. 

These metrics validate measurement reliability and serve as benchmarks for future experiments. 
Determining a minimum 𝑑2 based on enlargement equations (3 and 4) ensured both IEC criteria 
were satisfied. 

While increasing enlargement reduces blur and improves measurement accuracy, excessive 
enlargement can cause signal loss, risking IEC violations. Identifying a practical upper bound for 
enlargement that balances precision and signal strength is a logical next step for improving nominal 
value measurements. 

Smaller pinholes and longer exposure times also improved spatial measurement accuracy. 
Optimizing these parameters in tandem with enlargement boundaries will streamline testing and 
reduce guesswork. 

In summary, this study highlights practical strategies for improving focal spot measurements when 
using the Hamamatsu S11684-12 CMOS detector, while also adhering to the IEC’s standards. By 
refining alignment techniques, mitigating noise through averaging methods, and optimizing key 
parameters such as pinhole size and exposure time, future research can further enhance 
measurement accuracy and reproducibility. 
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Appendix A             

A.1 Nominal_Value_Finder.m  
This script uses functions “length_average.m” (Appendix A.1.i) and “width_average.m” (Appendix 
A.1.ii).  

Code Description 

Focal Spot Measurement Script 

This script is designed to measure the focal spot width and height using data from the Hamamatsu S11684 -12 

detector. It analyzes an image array captured in the detector plane, transforms the dimensions to the source plane, 

and accounts for optical blur. The script also evaluates signal quality metrics such as Signal-to-Noise Ratio (SNR) 

and calculates the number of unique signal levels. 

Key Features:  

1. Interactive selection of background and focal spot regions. 

 2. Calculation of focal spot dimensions in pixels and millimeters.  

3. Optical blur correction for accurate measurements.  

4. Signal-to-noise ratio computation and uncertainty estimation.  

5. Visualization of line spread functions for width and height. 

Inputs:  

- A '.mat' file containing the image array from the Hamamatsu detector.  

- User-defined optical parameters: d3, d2, pinhole size. 

Outputs:  

- Focal spot dimensions (pixels and millimeters).  

- Blur-corrected dimensions.  

- Signal-to-noise ratio and uncertainties. 

 - Number of unique signal levels.  

Uses functions:  

- length_average.m  

- width_average.m 

Author: Grant Budge  

 

clc; 

clear; 

close all; 

Select array and gather info from the array 

 

% Prompts select a .mat file containing the image array data. 

disp("Select your array."); 

[file, path] = uigetfile('*.mat', 'Select the saved Adjusted array'); 
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% Check if the user selected a file or canceled the operation. 

if isequal(file, 0) 

    disp('No file selected. Exiting script.'); 

    return; % Exit the script if no file is selected. 

else 

    % Load the selected .mat file and extract its contents. 

    loadedData = load(fullfile(path, file)); 

    varNames = fieldnames(loadedData); % Get variable names in the .mat file. 

 

     % Check if the .mat file contains any variables, just for error 

     % handling 

    if isempty(varNames) 

        error('The selected .mat file contains no variables.'); 

    end 

 

     % Extract the first variable in the .mat file as the image array. 

    image_array = loadedData.(varNames{1}); 

end 

% Display the name of the selected file for confirmation, this lets the  

% user see what variables they used. Users should name their array 

% something like "d3_661_d2_298_pinholesize_30_exposuretime_100ms_..." 

disp(['The name of your file is: ', file]); 

 

% Prompts to input optical parameters (d3, d2, pinhole size). 

while true 

    d3 = input("Enter your d3 value in millimeters: "); 

    d2 = input("Enter your d2 value in millimeters: "); 

    pinhole_size = input("Enter your pinhole in micrometers: "); 

    pinhole_size = pinhole_size/1000; % Convert micrometers to millimeters. 

 

     % Define detector maximum blur (fixed value based on system calibration).  

    detector_max_blur = 0.0277777; % in millimeters 

 

    % Ensure that d3 is greater than d2; otherwise, prompt again. 

    if d3 > d2 

        break; 

    else 

        disp('Error: d3 must be greater than d2. Please try again.'); 

    end 
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end 

 

% Calculate the enlargement factor based on optical geometry: 

Enlargement = d2 / (d3 - d2); 

disp(['Enlargement factor: ', num2str(Enlargement)]); 

 

% Find the maximum intensity value in the image array for thresholding later.  

max_intensity = max(image_array(:)); 

Select background 

 

% Prompts to select background region. Select the biggest region possible  

% for higher accuracy. 

while true 

    figure, imshow(image_array, []); 

    title('Select a region for the background (click and drag)'); 

    bg_selection = drawrectangle; 

    wait(bg_selection); 

    position = bg_selection.Position; 

    background_region = image_array(round(position(2)):(round(position(2)) + 

round(position(4))), round(position(1)):(round(position(1)) + round(position(3))));  

    background_mean = mean(background_region(:)); 

    disp(['Background mean intensity: ', num2str(background_mean)]); 

    if strcmp(questdlg('Are you satisfied with this selection?', 'Confirm Selection', 

'Yes', 'No', 'Yes'), 'Yes') 

        break; 

    else 

        close; 

    end 

end 

Select focal spot region 

Prompts to select the focal spot region. Make sure to select as little background as possible for highest accuracy. 

Include the entire focal spot in selection. 

close all; 

while true 

    figure, imshow(image_array, []); 

    title('Select a region around the focal spot'); 

    focal_region = drawrectangle; 
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    position = focal_region.Position; 

    x_start = round(position(1)); 

    y_start = round(position(2)); 

    width_region = round(position(3)); 

    height_region = round(position(4)); 

    break; 

end 

% focal spot full region 

focal_spot_region = image_array(y_start:(y_start + height_region - 1), 

x_start:(x_start + width_region - 1)); 

Find the width and length 

 

% - width_array: Vertical profile 

% - height_array: Horizontal profile (yes, height seems like a backwards 

%                                       term when doing it this way) 

width_array = width_average(image_array, x_start, y_start, width_region, 

height_region); 

height_array = length_average(image_array, x_start, y_start, width_region, 

height_region); 

 

threshold_intensity = background_mean + 0.15*(max_intensity - background_mean); 

disp(['Threshold intensity (15% max): ', num2str(threshold_intensity)]); 

Calculate the number of consecutive values > threshhold. 

 

% Function to find the longest sequence of consecutive values above a given threshold  

function [max_consecutive_count, start_index, end_index] = 

find_max_consecutive_above_threshold(array, threshold) 

    count = 0; % Counter for consecutive values above threshold 

    max_count = 0; % Maximum count of consecutive values 

    start_idx = 0; % Temporary start index for current sequence 

    max_start_idx = 0; % Start index of the longest sequence 

    max_end_idx = 0;   % End index of the longest sequence 

 

    % Loop through the array to check each value against the threshold 

    for i = 1:length(array) 

        if array(i) > threshold 

            if count == 0 
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                start_idx = i; % Start a new sequence 

            end 

            count = count + 1; % Increment count for consecutive values 

 

             % Update maximum sequence if current sequence is longer 

            if count > max_count 

                max_count = count; 

                max_start_idx = start_idx; 

                max_end_idx = i; 

            end 

        else 

            count = 0; % Reset counter if value drops below threshold 

            start_idx = 0; % Reset starting point 

        end 

    end 

 

    % Return the maximum count and indices of the longest sequence 

    max_consecutive_count = max_count; 

    start_index = max_start_idx; 

    end_index = max_end_idx; 

end 

 

% Find the maximum consecutive counts above the threshold for width and height arrays  

Pixel_width = find_max_consecutive_above_threshold(width_array, threshold_intensity);  

Pixel_height = find_max_consecutive_above_threshold(height_array, 

threshold_intensity); 

 

% Display the focal spot dimensions in pixels based on the calculated sequences  

disp(['The focal spot is: ', num2str(Pixel_width), ' pixels wide']); 

disp(['The focal spot is: ', num2str(Pixel_height), ' pixels long']); 

 

% clean up workspace, you may have multiple images open from the selection,  

% so we'll close those to save some space 

close all; 

Find intersection points for width and height 

 

% Find the indices where the intensity profile crosses the threshold 
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width_crossings = find(width_array > threshold_intensity); % Indices where width 

profile is above 15% max 

height_crossings = find(height_array > threshold_intensity); % Indices where height 

profile is above 15% max 

 

% Extract the first and last crossing points for the width profile 

width_start = width_crossings(1); 

width_end = width_crossings(end); 

 

% Extract the first and last crossing points for the height profile 

height_start = height_crossings(1); 

height_end = height_crossings(end); 

Graphing the line spread function for width  

Create a plot of the intensity profile for width 

figure; 

plot(width_array,"LineWidth",1.5); 

title('Line Spread Function - Width'); 

xlabel('Pixels'); 

ylabel('Intensity'); 

hold on; 

 

% Add a horizontal line at the threshold intensity 

plot([1, length(width_array)], [threshold_intensity, threshold_intensity], '--

k',"LineWidth",1.5); %threshold line 

 

% Mark the start and end points of the region above threshold with vertical lines  

xline(width_start, '--r', 'Start',"LineWidth",1.5); % vertical 

xline(width_end, '--r', 'End',"LineWidth",1.5); %  vertical 

legend('Intensity Profile', '15% max', 'Start', 'End'); 

Graphing the line spread function for height 

Create a plot of the intensity profile for height 

figure; 

plot(height_array,"LineWidth",1.5); 

title('Line Spread Function - Height'); 

xlabel('Pixels'); 

ylabel('Intensity'); 

hold on; 
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% Add a horizontal line at the threshold intensity 

plot([1, length(height_array)], [threshold_intensity, threshold_intensity], '--

k',"LineWidth",1.5); % threshold line 

 

% Mark the start and end points of the region above threshold with vertical lines  

xline(height_start, '--r', 'Start',"LineWidth",1.5); % vertical 

xline(height_end, '--r', 'End',"LineWidth",1.5); % vertical 

legend('Intensity Profile', '15% max', 'Start', 'End'); 

Change from pixels to distance 

and take into account enlargement 

 

% pixel size in millimeters 

pixel_size = 0.02; 

 

% Convert focal spot dimensions from pixels to millimeters, accounting for 

enlargement 

focal_spot_width_mm = (Pixel_width * pixel_size) / Enlargement; 

focal_spot_height_mm = (Pixel_height * pixel_size)/ Enlargement; 

 

% Display the focal spot dimensions in millimeters 

disp(['The focal spot width is: ', num2str(focal_spot_width_mm), ' mm']); 

disp(['The focal spot height is: ', num2str(focal_spot_height_mm), ' mm']); 

Account for blur Width and Height 

 

% Calculate the total blur using detector blur and pinhole size 

Blur = sqrt(detector_max_blur.^2 + pinhole_size.^2 * (Enlargement + 1).^2) / 

Enlargement; 

 

% Linear Corrections 

quad_no_blur_width = (focal_spot_width_mm / Enlargement) - Blur; 

quad_no_blur_height = (focal_spot_height_mm / Enlargement) - Blur; 

 

% % Quadrature Corrections 

% no_blur_height = sqrt(( focal_spot_width_mm / E)^2 - B_tot^2); 

% no_blur_height = sqrt((focal_spot_height_mm/ E)^2 - B_tot^2); 
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disp(['The focal spot width after accounting for blur linearly is: ', 

num2str(no_blur_width), ' mm']); 

disp(['The focal spot height after accounting for blur linearly is: ', 

num2str(no_blur_height), ' mm']); 

disp(['The focal spot width after accounting for blur quadrature is: ', 

num2str(quad_no_blur_width), ' mm']); 

disp(['The focal spot height after accounting for blur quadrature is: ', 

num2str(quad_no_blur_height), ' mm']); 

Signal to noise ratio 

 

% Calculate the mean signal intensity within the focal spot region 

signal = mean(focal_spot_region(:)); 

 

% Calculate the standard deviation of the background region (noise) 

noise = std(background_region(:),1,"all"); 

 

% Calculate the standard deviation of the focal spot region 

fs_std = std(focal_spot_region(:),1,"all"); 

 

% Compute the signal-to-noise ratio (SNR) 

SNR = signal./noise; 

 

% Calculate uncertainties using standard error formulas 

n= numel(focal_spot_region) % Number of pixels in the focal spot region 

fs_error = fs_std / sqrt(n); % Uncertainty in focal spot mean 

m = numel(background_region) % Number of pixels in the background region 

BG_std_error = noise / sqrt(m); % Uncertainty in background noise 

disp(['The signal to noise ratio is: ', num2str(SNR)]); 

disp(['The focal spot mean is ', num2str(signal)]); 

disp(['The uncertainty on Focal Spot Mean is ', num2str(fs_error)]); 

disp(['The background std is ', num2str(noise)]); 

disp(['The uncertainty on Background standard deviation is ', 

num2str(BG_std_error)]); 

 

Published with MATLAB® R2024b  

https://www.mathworks.com/products/matlab/
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A.1.i length_average.m 

 

function row_average = length_average(image_array, x, y, width, height) 

    % region of interest is the focal spot rectangle 

    roi = image_array(y:y+height-1, x:x+width-1); 

 

    % Compute the mean along each column to get a row 

    row_average = mean(roi,1); 

end 

 

Published with MATLAB® R2024b  

 

 

 

A.1.ii width_average.m 

 

function column_average = width_average(image_array, x, y, width, height) 

    % region of interest is the focal spot rectangle 

    roi = image_array(y:y+height-1, x:x+width-1); 

 

    % Compute the mean along each row to get a column vector 

    column_average = mean(roi, 2); 

end 

Published with MATLAB® R2024b  

 

 

 

 

 

 

 

https://www.mathworks.com/products/matlab/
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A.2 GB_FFC.m 

function FFC = GB_FFC() 

Code Description 

This script performs flat-field correction (FFC) and row normalization for a set of images taken by the Hamamatsu 

S11684-12 detector (Dark, X-ray, and Gain) by following these steps:  

1. Prompts the user to select and average Dark, X-ray, and Gain images.  

2. Minimizes row-sequential readout noise in the averaged images. (ATN method)  

3. Performs calculations to subtract the Dark image from the X-ray and Gain images, applies weighted 

averaging, and computes the FFC array.  

4. Adjusts the FFC array by adding a scaled standard deviation to make most negative values positive.  

5. Displays the standard deviation of the FFC array and provides an option to save the result as a '.mat' file.  

Uses functions:  

- GB_AVG_images(): Function to average selected images. (Appendix A.2.i) 

- GB_minimize_noise(): ATN method for row-noise in images. (Appendix B) 

- GB_calculate_weighted_average_image(): Function to compute a weighted average of an image array.   

(Appendix A.2.ii) 

Author: Grant Budge  

 

%--------------------------------------------------------------------------  

Section 1 

 

%--------------------------------------------------------------------------  

 

% 

% AVERAGE DARK AD 

% 

fprintf('SELECT ALL DARK IMAGES.\n'); 

pause(1.5); 

% Average all your Dark images by calling the averaging function. 

try 

    AD = GB_AVG_images(); 

    disp('Averaging Dark Images...'); 

catch ME 

    disp('You have not selected any images.'); 

    return; 

end 

if ~exist('AD','var')|| isempty(AD) 
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    disp('You either cancelled your selection or didnt select valid images.') 

    pause(1); 

    disp("Ending Script.") 

    return; 

end 

% 

% AVERAGE XRAY AX 

% 

fprintf('SELECT ALL XRAY IMAGES.\n'); 

pause(1.5); 

try 

    % Average all of your xray images by calling the averaging function. 

    AX = GB_AVG_images(); 

    disp('Averaging XRAY Images...'); 

    pause(1); 

catch ME 

    disp('You have not selected any images.'); 

    return; 

end 

if ~exist('AX','var')|| isempty(AX) 

    disp('You either cancelled your selection or didnt select valid images.') 

    pause(1); 

    disp("Ending Script.") 

    return; 

end 

% 

% AVERAGE GAIN AG 

% 

fprintf('SELECT ALL GAIN IMAGES.\n'); 

pause(1.5); 

try 

    % Average all of your Gain images by calling the averaging function. 

    AG = GB_AVG_images(); 

    disp('Averaging Gain Images...'); 

    pause(1); 

catch ME 

    disp('You have not selected any images.'); 

    return; 

end 
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if ~exist('AG','var')|| isempty(AG) 

    disp('You either cancelled your selection or didnt select valid images.') 

    pause(1); 

    disp("Ending Script.") 

    return; 

end 

% 

%--------------------------------------------------------------------------  

SELECT ALL DARK IMAGES. 

You have not selected any images. 

Section 2 

%--------------------------------------------------------------------------  

 

AX = GB_minimize_noise(AX,1); 

AD = GB_minimize_noise(AD,1); 

AG = GB_minimize_noise(AG,1); 

% 

% 

%--------------------------------------------------------------------------  

Section 3 

 

%--------------------------------------------------------------------------  

% 

% 

% AX - AD which will give AS, Average Subtracted 

% 

AS = AX-AD; 

% 

% 

% AG - AD which will give AGC, Average Gain Corrected 

% 

AGC = AG-AD; 

% 

% 

% Call the weighted average of the AGC = ACGA 

% 

ACGA = GB_calculate_weighted_average_image(AGC); 
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% 

% 

% AS * ACGA = ASACGA (no real name for this, just multiplying the entire  

% avergae subtraction array by the weighted average gain value) 

% 

ASACGA = AS .* ACGA; 

% 

% 

% ASACGA / AGC = Flat Field Corrected FFC 

FFC = ASACGA ./ AGC; 

 

%--------------------------------------------------------------------------  

Section 4 

 

%--------------------------------------------------------------------------  

% 

% Find the standard deviation 

std_ffc = std(FFC(:),'omitnan'); 

disp('The standard deviation is:'); 

disp(std_ffc); 

% Make most of the negative numbers positive. 

fprintf('You will be adding %.3f to your array.', 3*std_ffc); 

FFC = FFC + 4.*std_ffc; 

% 

% we can save the result 

[file, path] = uiputfile('*.mat', 'Save the final array'); 

if isequal(file, 0) 

    disp('You decided not to save the final array.'); 

else 

    save(fullfile(path, file), 'FFC'); % Save the FFC array in .mat format 

    disp(['You saved as: ', fullfile(path, file)]); 

end 

 

Published with MATLAB® R2024b  

 

https://www.mathworks.com/products/matlab/
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A.2.i GB_AVG_images 
Code Description 

GB_AVG_images - Image Averaging Function 

This function calculates the pixel-wise average of multiple 16-bit TIFF images while excluding invalid pixels in 

triangular regions and edge rows. Designed specifically for flat-field correction in X-ray imaging systems using 

Hamamatsu S11684-12 detector. 

Key Features:  

1. Interactive multi-file selection of 16-bit TIFF images  

2. Automatic exclusion of: - Top/bottom 3 rows - Triangular regions at image corners  

3. NaN handling for robust averaging with partial valid data  

4. Validation of image bit-depth and file integrity  

5. Progressive summation to handle large datasets 

Inputs:  

- User-selected 16-bit TIFF files via dialog box 

Outputs:   

- AVG_array: Double-precision array of averaged pixel values 

Called By:  

- GB_FFC.m (Flat Field Correction routine) 

Dependencies:  

- Image Processing Toolbox  

- MATLAB R2024a or newer 

Author: Grant Budge  

 

function [AVG_array] = GB_AVG_images() 

 

    AVG_array = []; 

    % Using 'uigetfile' to get multiple images. 

    [files, path] = uigetfile({'*.tif;*.tiff', 'ONLY 16-bit tif files (*.tif, 

*.tiff)'}, ... 

                              'Select Images', 'MultiSelect', 'on'); 

 

    % If you cancel your selection, end the script 

    if isequal(files, 0) 

        disp('No images selected.'); 

        return; 

    end 

 

    % if only one image is selected, we have to convert the 'files' to a 

    % cell array 

    if ischar(files) 
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        files = {files}; 

    end 

 

    % we need to store and count each image selected. 

    counter = 0; 

    image_sum = []; 

    valid_pixel_count = []; 

 

    % Process each of the selected image 

    for i = 1:length(files) 

        try 

            % Read the selected image i 

            image = imread(fullfile(path, files{i})); 

        catch ME 

            warning('Could not read image: %s. Error: %s', files{i}, ME.message); 

            continue; 

        end 

 

        % Make sure that each image is 16 bits. 

        if ~isa(image, 'uint16') 

            warning('The selected image: \n %s \n is not 16-bits, it will be 

skipped.', files{i}); 

            continue; 

        end 

 

        % Convert the image (i) to a double for the calculation process 

        image_array = double(image); 

 

        % Add together the images using rows, columns, and channels 

        % This will create a dummy variable, image_sum 

        % All images will be added to the last image sum 

        % The final image_sum will be taken for averaging 

            if counter == 0 

            [rows, columns, channels] = size(image_array); 

            image_sum = zeros(rows, columns, channels); 

            valid_pixel_count = zeros(rows,columns,channels); 

            end 

        % create a mask that discounts the unwanted pixels. This will turn 

        % the top triangles into NaN and will also take care of the top 3 
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        % and bottom 3 rows 

        mask = ones(rows,columns); 

        for r = 1:117 

            mask(r, 1:(117-r+1)) = 0; % Top left triangle 

            mask(r,columns - (117-r):columns) = 0; % top right triangle 

        end 

        mask(1:3,:)=0; % top three rows 

        mask(end-2:end,:) = 0; %bottom three rows 

 

        % apply the mask to the image 

        image_array(mask == 0) = NaN; 

 

        %now we can count valid pixels and find sums properly 

        image_sum = image_sum + image_array; 

        valid_pixel_count = valid_pixel_count + ~isnan(image_array); 

        counter = counter + 1; 

 

 

 

    end 

 

    % If the images have been added together, calculate the average 

    if counter > 0 

        %avoid division by zero 

        valid_pixel_count(valid_pixel_count ==0)=NaN; 

        AVG_array = image_sum ./ valid_pixel_count; 

 

        % We return an array to GB_FFC.m 

    else 

        disp('No valid images were selected.'); 

        AVG_array = []; 

    end 

end 

 

Published with MATLAB® R2024b  

 

 

https://www.mathworks.com/products/matlab/
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A.2.ii GB_calculate_weighted_average_image  
Code Description 

GB_calculate_weighted_average_image - Weighted Pixel Averaging Function 

This function computes a weighted average of valid pixels in a 2D array while excluding specific detector regions. 

Designed for Hamamatsu S11684-12 CMOS detector data processing in flat-field correction workflows. 

Key Features:  

1. Hardware-specific masking of: - Top/bottom 3 rows - Triangular corner regions (rows 1-117)  

2. Column-wise NaN handling for robust averaging  

3. Computes global weighted average across all valid pixels  

4. Generates uniform output array with average value 

Inputs: - ACG_array: 2D array of corrected gain values (typically from AG-AD calculation) 

Outputs: - ACGA: Uniform array filled with computed weighted average value 

Called By: - GB_FFC.m (Flat Field Correction routine) 

Dependencies: 

  - MATLAB base functions  

- Requires input array from dark-corrected gain images 

Author: Grant Budge  

 

function ACGA = GB_calculate_weighted_average_image(ACG_array) 

 

    % Read in the array 

    image1 = ACG_array; 

 

    % Create a binary mask for the triangular regions to be excluded. 

    % Mask is specific to S11684-12 CMOS detector by Hamamatsu. 

        [rows, cols] = size(image1); 

        mask = ones(rows, cols); 

 

        % Define the triangular areas to exclude (top-left and top-right) 

        for i = 1:117 

            mask(i, 1:(117-i+1)) = 0;  % Top-left triangle 

            mask(i, cols-(117-i):cols) = 0;  % Top-right triangle 

        end 

        for i = 1:3 

            mask(i, 1:cols) = 0; % Top 3 rows 

            mask(rows-i+1, 1:cols) = 0; % Bottom 3 rows 

        end 

        % Apply the mask to set excluded pixels to NaN, for the sake of having 

        % consistent values to ignore. (everything ignored is NaN) 
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        image1(mask == 0) = NaN; 

 

        % Initialize some variables for a weighted average 

        total_sum = 0; 

        total_valid_count = 0; 

 

        % Go through each column to calculate the weighted averages 

        for i = 1:cols 

            col_values = image1(:, i); 

 

            % Remove all the NaN values from the column 

            valid_values = col_values(~isnan(col_values)); 

            valid_count = length(valid_values); 

 

            % Compute the average. 

            if valid_count>0 

                total_sum = total_sum + sum(valid_values); % sums ONLY the valid 

pixel values 

                total_valid_count = total_valid_count + valid_count; % keeps track of 

how many pixels are valid. 

            end 

        end 

 

 

        % Calculate the weighted average of the array. 

        if total_valid_count > 0 

            weighted_average_value = total_sum ./ total_valid_count; 

        else 

            weighted_average_value = NaN; 

        end 

 

        % Create a new image of the same size with the average value 

        % ACGA = Average Corrected Gain Average 

        ACGA = ones(size(image1)) .* weighted_average_value; 

 

Published with MATLAB® R2024b  

 

https://www.mathworks.com/products/matlab/


63 
 

A.3 GB_image_rotatation.m 
Code Description 

Focal Spot Image Processing Script 

This script processes flat-field corrected (FFC) X-ray focal spot images for analysis and measurement. Provides 

interactive tools for alignment and preparation of focal spot images for dimensional measurements. 

Key Features:  

1. Flexible input: Load existing FFC array or generate new correction  

2. Interactive contrast adjustment for optimal visualization  

3. Real-time image rotation alignment via user-drawn line  

4. Manual cropping interface for region-of-interest selection  

5. Dual-format saving (.mat and .tif) for processed images 

Inputs:  

- User choice: Precomputed FFC array (.mat) or new GB_FFC() generation  

- Interactive line drawing for rotation alignment  

- Manual cropping selection 

Outputs:  

- cropped_image_array: Processed focal spot image  

- Saved files: .mat (data) and .tif (visualization) 

Dependencies:  

- GB_FFC.m  

- GB_image_window_and_level.m (Appendix A.3.i) 

- GB_crop_image.m (Appendix A.3.ii) 

Author: Grant Budge  

clc; clear; close all; 

Step one is to call FFC and to return an array that we can work with 

choice = input('Would you like to:\n    1. Load an existing FFC array\n     2. Create 

a new FFC array\nEnter 1 or 2: '); 

 

if choice == 1 

    % You can select which .mat file to choose from. that way its an array.  

    [file, path] = uigetfile('*.mat', 'Select the saved FFC array'); 

    if isequal(file, 0) 

        disp('No file selected. Exiting script.'); 

        return; 

    else 

        loadedData = load(fullfile(path, file)); 

        image_array = loadedData.FFC; 

        disp(['Loaded FFC array from: ', fullfile(path, file)]); 

    end 
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elseif choice == 2 

    %Create a new FFC array 

    image_array = GB_FFC(); 

else 

    error('Invalid input. Please restart and enter 1 or 2.'); 

end 

array_minimum_value = min(image_array(:)); 

if array_minimum_value <0 

    image_array = image_array - array_minimum_value; 

end 

 

 

% 

% 

% 

Step two is to adjust the contrast and window so that its easier to work with visually. 

[final_level, final_window] = GB_image_window_and_level(image_array, 1); 

disp(['Final Level: ', num2str(final_level), ' \n Final Window: ', 

num2str(final_window)]); 

% 

close all; 

% 

% Adjust the values of image_array using final level and final window 

min_val = final_level - final_window / 2; 

max_val = final_level + final_window / 2; 

% 

% put image_array to the range [min_val, max_val] 

adjusted_image_array = max(min(image_array, max_val), min_val); 

% 

% Normalize the adjusted image to a range of [0, 65535] 

adjusted_image_array = (adjusted_image_array - min_val) / (max_val - min_val) * 

65535; 

% 

%Display the adjusted image 

fig_adjusted = figure; 

imshow(adjusted_image_array, [], 'Colormap', gray); 

title('The Adjusted Image'); 

colorbar; 
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% 

% 

% 

We need to rotate the image such that the focal spot is horizontal / vertical 

 

% Loop until happy with alignment 

is_happy = false; 

roi = []; 

 

while ~is_happy 

    % Ask the user to draw the line 

    disp('Please draw a line along the length of the focal spot.'); 

 

    % Bring the adjusted image figure to front 

    figure(fig_adjusted); 

 

    % Delete the last line if it exists 

    if ~isempty(roi) && isvalid(roi) 

        delete(roi); 

    end 

 

    roi = drawline; 

 

    % Endpoints for slope calculation 

    position = roi.Position; 

    x1 = position(1, 1); 

    y1 = position(1, 2); 

    x2 = position(2, 1); 

    y2 = position(2, 2); 

 

    % Compute the angle with respect to the x-axis 

    rotation_angle = atan2(y2 - y1, x2 - x1) * (180 / pi); 

 

    % Rotate image 

    rotated_image_array = imrotate(adjusted_image_array, rotation_angle, 'nearest', 

'crop'); 

 

    % Display the rotated image 
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    fig_rotated = figure; 

    imshow(rotated_image_array, [], 'Colormap', gray); 

    title(['Rotated Image (Rotated by ', num2str(rotation_angle), ' degrees)']); 

    colorbar; 

 

    % Ask user if they are happy with the rotation 

    choice = input('Are you happy with the alignment? (1 = Yes, 2 = No): '); 

 

    if choice == 1 

        is_happy = true; % Exit loop 

        disp(['The image was rotated by ', num2str(rotation_angle), ' degrees to 

align focal spot.']); 

        close(fig_adjusted); % Close the original adjusted image figure 

    else 

        close(fig_rotated); % Close the rotated image figure 

        disp('Redoing line selection...'); 

    end 

end 

Now we can crop around the focal spot 

 

% Call the new function to crop the rotated image array 

cropped_image_array = GB_crop_image(rotated_image_array); 

 

figure; 

imshow(cropped_image_array, [], 'Colormap', gray); 

title('Cropped Focal Spot'); 

colorbar; 

We can save this NEW rotated and cropped array as both a .tif and a .mat 

 

% 

% .mat 

% 

[file, path] = uiputfile('*.mat', 'Save the Cropped and Rotated array as a .mat'); 

if isequal(file, 0) 

    disp('You decided not to save the final array.'); 

else 

    save(fullfile(path, file), 'cropped_image_array'); 
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    disp(['You saved as: ', fullfile(path, file)]); 

end 

 

Published with MATLAB® R2024b  
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A.3.i GB_image_window_and_level.m 
Code Description 

GB_image_window_and_level - Interactive Contrast Adjustment Tool 

This function provides interactive window/level adjustment for X-ray focal spot images with automated contrast 

recommendations. Integrates with Hamamatsu detector analysis pipelines for optimized image visualization.  

Key Features:  

1. Dual-mode operation: Automated percentile-based contrast suggestions  

2. Interactive terminal interface for manual refinement  

3. Real-time image updates with colorbar display  

4. Comprehensive statistical reporting (min/max/mean/median/mode)  

5. Input validation to prevent invalid contrast ranges 

Inputs:  

- input_array: 2D image data (typically flat-field corrected)  

- fig_num: Figure handle for display 

Outputs:  

- final_level: Center value of contrast range 

  - final_window: Width of contrast range 

Called By:  

- GB_image_rotation.m 

Dependencies:  

- Image Processing Toolbox (imshow)  

- Statistics and Machine Learning Toolbox (prctile) 

Author: Paul Johns 

 

function [final_level, final_window] = GB_image_window_and_level(input_array, 

fig_num) 

    fmtstr_6 = ['\n','Min = ','%6d   \n',' avg = ','%8.1f  \n', 'med = ','%6d  \n',' 

mode = ','%6d \n',' max = ','%6d    \n']; 

    fmtstr_7 = ['\n','Current level = ','%8d']; 

    fmtstr_8 = ['Data range = ','%8d','  Current window = ','%8d']; 

 

    % Get array stats 

    array_maximum_value = max(input_array(:)); 

    array_minimum_value = min(input_array(:)); 

    mode_array_value = mode(input_array, 'all'); 

    NaN_excluded_array = input_array(~isnan(input_array)); 

    mean_array_value = mean(NaN_excluded_array); 

    median_array_value = median(NaN_excluded_array); 

 

    % Auto contrast using percentiles 

    lowerPercentile = prctile(input_array(:), 0.1); 
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    upperPercentile = prctile(input_array(:), 99.9); 

 

    % Recommended values 

    autoContrastMin = lowerPercentile; 

    autoContrastMax = upperPercentile; 

    recomended_level = (autoContrastMin + autoContrastMax) / 2; 

    recomended_window = autoContrastMax - autoContrastMin; 

 

    % Ensure window is not zero 

    if recomended_window <= 0 

        recomended_window = 1; 

    end 

 

    % Initialize level and window 

    array_level = recomended_level; 

    array_window = recomended_window; 

 

    % Display initial image 

    figure(fig_num); 

    imshow(input_array, "DisplayRange", [array_level - 0.5 * array_window, 

array_level + 0.5 * array_window]); 

    colorbar; 

 

    % Interactive Adjustment 

    flag = 1; 

    while (flag) 

        fprintf(fmtstr_6, array_minimum_value, mean_array_value, median_array_value, 

mode_array_value , array_maximum_value); 

        fprintf(fmtstr_7, array_level); 

        fprintf('\nRecommended Level: %.2f \n', recomended_level); 

        fprintf('Recommended Window: %.2f \n', recomended_window); 

 

        % Get user input 

        val1 = input('Enter new level (negative number to skip): '); 

        if (val1 <= 0) 

            flag = 0; 

        else 

            val2 = input('Enter new window (negative number to skip): '); 

            if (val2 <= 0) 



70 
 

                flag = 0; 

            end 

        end 

 

        if (flag) 

            if (~isempty(val1)), array_level = val1; end 

            if (~isempty(val2)), array_window = val2; end 

 

            % Ensure valid limits 

            array_value_lower_limit = array_level - 0.5 * array_window; 

            array_value_upper_limit = array_level + 0.5 * array_window; 

            if (array_value_upper_limit == array_value_lower_limit) 

                array_value_upper_limit = array_value_lower_limit + 1; 

            end 

 

            % Update display 

            imshow(input_array, "DisplayRange", [array_value_lower_limit, 

array_value_upper_limit]); 

            colorbar; 

        end 

    end 

 

    % Return final level and window values 

    final_level = array_level; 

    final_window = array_window; 

end 
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A.3.ii GB_crop_image 
Code Description 

GB_crop_image - Interactive Image Cropping Function 

This function provides interactive region-of-interest (ROI) selection for cropping focal spot images in X-ray detector 

analysis workflows. 

Inputs:  

- image_array: 2D array of processed image data (typically rotated FFC output) 

Outputs:  

- cropped_image_array: Subregion of input array containing focal spot 

Called By:  

- GB_image_rotation.m 

Dependencies:  

- Image Processing Toolbox (imcrop, drawrectangle)  

Author: Grant Budge  

 

function cropped_image_array = GB_crop_image(image_array) 

    close all; 

 

    % Display for cropping 

    figure; 

    imshow(image_array, [], 'Colormap', gray); 

    title('Select the region to crop around the focal spot'); 

    colorbar; 

 

    % Cropping region of interest (in green because I like green) 

    roi = drawrectangle('Label', 'Crop Region', 'Color', 'g'); 

 

    % take the position of the roi 

    position = roi.Position; 

 

    % crop the region 

    cropped_image_array = imcrop(image_array, position); 

    close(gcf); 

end 
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Appendix B 

B.1 GB_minimize_noise.m 
Code Description 

GB_minimize_noise - Adaptive Threshold Normalization (ATN) for Noise Reduction 

This function implements the ATN method to minimize structured noise in radiographic images by normalizing row 

intensities using edge column averages. Particularly effective for Hamamatsu S11684-12 detector images with 

characteristic edge artifacts. 

Key Features:  

1. Dual-mode operation: Automatic (recommended) or manual column selection  

2. Adaptive normalization using edge column statistics  

3. NaN-aware calculations for robust processing  

4. Row-wise correction preserving central image features 

Methodology:  

1. Samples left/right edge columns (default: cols 1-150 & 851-1000)  

2. Computes row-wise averages of edge regions  

3. Calculates global normalization constant 'a'  

4. Applies multiplicative correction to entire image 

Inputs:  

- input_array: 2D image array with noise patterns  

- input_value: Control flag (0=auto, 1=manual) 

Outputs:  

- minimized_noise_array: Corrected image array 

Usage Notes:  

- Automatic mode recommended for standard detector configurations  

- Manual mode allows custom column ranges for specialized applications 

Author: Grant Budge  

Affiliation: Carleton University  

function [minimized_noise_array] = GB_minimize_noise(input_array, input_value) 

 

%--------------------------------------------------------------------------  

Section 1: 

 

%--------------------------------------------------------------------------  

% The needed stats of the array will be found. 

% 

OG = input_array; 

% Size 

[rows, columns] = size(OG); 
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Section 2: 

 

%--------------------------------------------------------------------------  

% This will ask the user for a selection of columns on the left side of  

% their radiograph. It will tell them the size they have to work with and 

% recommend a standard setting. 

fprintf('\n'); 

fprintf('The number of columns in your array is %f', columns); 

fprintf('\n We suggest your left side column to be around 1-150 and right side to be 

around 851-1000. \n'); 

flag = 1; 

 

while true 

    % THIS IS TO MAKE IT SO YOU CAN MAKE THIS AUTOMATIC FOR DARK AND 

    % FOR GAIN IMAGES. 

    if input_value == 0 

        i=1; 

        j=150; 

        k=851; 

        l=1000; 

        flag = 0; 

        fprintf('\n Perfect! Lets fix that noise.\n'); 

        break; 

    else 

        auto = input('For automatic averaging, enter 0. To manually select columns, 

enter any number other than 0: '); 

        if isnumeric(auto) 

            if auto == 0 

                i=1; 

                j=150; 

                k=851; 

                l=1000; 

                flag = 0; 

                fprintf('\n Perfect! Lets fix that noise.\n'); 

                break; 

            else 

                break; 

            end 
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        else 

            disp('Please enter a valid numeric value.'); 

        end 

    end 

end 

while flag 

    i = input('Enter the starting column of the LEFT side that you would like to 

average (1): '); 

    j = input('Enter the ending column of the LEFT side that you would like to 

average (150): '); 

    k = input('Enter the starting column of the RIGHT side that you would like to 

average (851): '); 

    l = input('Enter the ending column of the RIGHT side that you would like to 

average (1000): '); 

    % Check the conditions 

    if j > i && k > j && l > k && l <= columns 

        flag=0; % Exit the loop if all conditions are satisfied 

    else 

        fprintf('Invalid input. Please ensure that:\n'); 

        fprintf(' - %d is greater than %d\n',j,i); 

        fprintf(' - %d is greater than %d\n',k,j); 

        fprintf(' - %d is greater than %d\n',l,k); 

        fprintf(' - %d is not greater than the number of columns (%d)\n\n', l 

,columns); 

    end 

end 

% 

%--------------------------------------------------------------------------  

Section 3: 

 

%--------------------------------------------------------------------------  

% The math for averaging the columns 

% 

left = OG(:, i:j); % make a matrix of the left selection (1-150). 

right = OG(:,k:l); % make a matrix of the right selection (851-1000). 

averaging_array = zeros(rows, j-i+1 + l-k+1); % make an averaging array the size of 

the selected columns. 

averaging_array(:,1:j-i+1) = left; % let the averaging array contain the left matrix. 



75 
 

averaging_array(:,j-i+2:end) = right; % let the averaging array contain the right 

matrix. 

 

% This averaging array is now filled with every value that the user 

% selected. Some values may be NaN. We're going to average all of the 

% Number values and ignore the NaN in EACH ROW. The average of each row  

% will be put into a new array. We need to remember that if all of the 

% numbers in the row are NAN, then we need to return NaN value. this will  

% happen in the top 3 rows and bottom 3 rows every time. 

 

averaged_array=zeros(rows,1); 

 

% for all of the rows in averaging_array, we need to average the number and  

% add it to the averaged array 

for row = 1:rows 

    row_values = averaging_array(row, :); 

    % Check if the entire row is NaN 

    if all(isnan(row_values)) 

        averaged_array(row) = NaN; % Keep NaN if all values are NaN 

    else 

        % Calculate the average of number values 

        averaged_array(row) = mean(row_values(~isnan(row_values))); 

    end 

end 

% Now we have our averaged array. we need to normalize it. 

% Our normalization constant is "a" 

a = mean(averaged_array(~isnan(averaged_array))); 

averaged_array = a./averaged_array; 

 

% This averaged array is now normalized and we can multiply value in the 

% specifc rows to make the noise better. 

 

minimized_noise_array = OG.*averaged_array; 
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