

Analyzing the Radiation Emission

Pattern of an X-Ray Tube’s Focal Spot

Grant Budge

Carleton University

Phys 4909 A

April 2025

1

Contents
Abstract ... 3

1.0 Introduction to X-ray Focal Spots and Nominal Values .. 4

1.1 Background Information .. 4

1.2 Objective ... 5

2.0 Theoretical Framework... 7

2.1 Pinhole Imaging .. 7

2.2 Blur and Detector Resolution ... 8

2.2.1 Pinhole Blur.. 8

2.2.2 Detector Resolution ... 9

2.2.3 Detector Blur.. 11

2.2.4 Total Blur .. 11

2.3 Flat Field Correction ... 12

2.4 Row Sequential Readout and Normalization ... 13

3.0 Methods and Materials... 16

3.1 Experimental Set up.. 16

3.2 Capturing a Radiographic Pinhole Image ... 18

3.3 Measuring Nominal Value .. 19

4.0 Analysis ... 21

4.1 Matrix Analysis ... 21

4.1 Analyzing the Effective Focal Spot Data .. 24

4.3 Nominal Value Analysis... 33

5.0 Results and Discussion.. 39

5.1 Results .. 39

5.2 Discussion ... 42

5.3 Acknowledgements .. 43

6.2 References... 44

Appendix A ... 45

A.1 Nominal_Value_Finder.m .. 45

A.1.i length_average.m ... 53

A.1.ii width_average.m.. 53

A.2 GB_FFC.m ... 54

A.2.i GB_AVG_images .. 58

2

A.2.ii GB_calculate_weighted_average_image .. 61

A.3 GB_image_rotatation.m .. 63

A.3.i GB_image_window_and_level.m ... 68

A.3.ii GB_crop_image ... 71

Appendix B ... 72

B.1 GB_minimize_noise.m .. 72

3

Abstract

The focal spot of an x-ray tube is the region of an x-ray machine at which the x rays are generated. The
International Electrotechnical Commission (IEC) assigns numerical nominal focal spot values to the
size of x-ray tube focal spots to ensure consistent measurement across different machines and
manufacturers.

Using pinhole imaging, the digital mapping of the focal spots by the Hamamatsu S11684-12 CMOS
detector was evaluated to enhance the efficiency of measuring the nominal focal spot value in
accordance with the IEC Standard 60336:2020. A key objective was to establish a clear reference for
future testing by evaluating various combinations of imaging parameters such as enlargement,
pinhole size, current, and exposure time - to determine which configurations reliably met IEC
requirements. The criteria of the IEC include: a focal spot width at 15% of maximum intensity
spanning at least 60 pixels, a signal-to-noise ratio (SNR) of at least 100, and a minimum of 200 signal
levels between the background and maximum signal.

Using MATLAB, fixed pattern noise from the detector's row-sequential readout was addressed and
reduced through a matrix normalization technique. Two normalization methods were compared:
averaging then normalizing (ATN) and normalizing then averaging (NTA), with NTA offering slightly
superior noise reduction for smaller images.

Additionally, a method for generating two line spread functions was developed to measure focal spot
size. By averaging the focal spot width wise and height wise, the two line spread functions allowed
for the measurement of focal spot width and height at 15% maximum intensity, as per IEC
requirements.

The measured nominal value for the large focal spot was 𝑓𝑊 = 1.5 and 𝑓𝐻 = 1.3.

The measured nominal value for the small focal spot was 𝑓𝑊 = 0.7 and 𝑓𝐻 = 0.9.

These values were inconsistent with the manufacturer’s serial plate which shows 𝑓(𝑙𝑎𝑟𝑔𝑒) = 1.2 and
𝑓(𝑠𝑚𝑎𝑙𝑙) = 0.6.

This work provides a practical framework to guide future evaluations and ensure consistent, IEC
compliant measurements.

4

1.0 Introduction to X-ray Focal Spots and Nominal Values

1.1 Background Information
X-ray machines generate x-rays by accelerating electrons towards a metal anode using a high-voltage
electric field, known as the accelerating potential or kilovoltage (𝑘𝑉).1 These electrons originate at
the cathode, where a heated tungsten filament, powered by an electric current, releases electrons
through thermionic emission. As the electrons accelerate, they form a moving beam of charge,
known as the tube current, typically measured in milliamperes (𝑚𝐴). When the electron beam
strikes the focal spot on the anode (usually an alloy of roughly 90% tungsten and 10% rhenium), the
electrons undergo a sudden deceleration. This generates x-rays primarily through Bremsstrahlung
(braking radiation), which occurs when the electrons are decelerated and deflected by the strong
electric fields of the atomic nuclei in the tungsten (or other target material), converting their kinetic
energy into electromagnetic radiation.2 The efficiency of Bremsstrahlung is relatively low for the
electron energies in an x-ray tube—less than 1% of the electron’s kinetic energy is converted into x-
rays, while the remaining energy is converted into heat. Tungsten is the preferred material due to its
high atomic number (74), which increases the likelihood of Bremsstrahlung. Also, its ability to
withstand extreme temperatures, with a melting point of 3,422°C, make it ideal for handling the heat
generated during x-ray production.

Previous studies at Carleton University, under the guidance of Dr. Paul Johns, have contributed to the
field of focal spot imaging. Eva Anderson evaluated the Hamamatsu S11684-12 CMOS detector,
focusing on its practicality for imaging x-ray focal spots. Her work resulted in a focal spot size
measurement that met IEC tolerance limits using the Hamamatsu detector.34 André Ramos Moreno
developed a design for aligning detector, pinhole, and the x-ray focal spot, performing mathematical
and numerical analyses to improve measurement accuracy. His design is a pinhole and detector
stand, which will be useful in capturing higher-precision images when it is finished construction.5
Building on the prior work done, this work aims to enhance the efficiency of producing focal spot
measurements that meet the IEC's standards for medical imaging.

Different focal spot sizes are necessary because they cater to various imaging applications. Different
sizes allow for a balance between factors such as image resolution, heat dissipation, and exposure
time. Smaller focal spots provide higher resolution but may limit the tube's capacity to handle high
exposures. Larger focal spots allow for higher power outputs but reduce image sharpness.

To ensure that an x-ray tube’s source is suitable for its intended application, its focal spot must be
accurately characterized in accordance with industry standards. The International Electrotechnical
Commission (IEC) mandates that each focal spot be assigned a nominal value for consistency
across manufacturers and equipment type.6

The effective focal spot size differs from its actual size, with the anode angle (𝜙) being crucial to this
variation. Two anodes with the same actual focal spot size may have different effective focal spot
sizes with a different anode angle 𝜙 (see Figure 1). A larger anode angle with a smaller actual focal
spot may appear similar in size to a smaller anode angle with a larger actual focal spot. The effective
focal spot size is what determines the nominal focal spot value.7

5

1.2 Objective
The goal of this research is to develop a method for measuring the nominal value of a focal

spot using the Hamamatsu digital detector. This method should consider the detector’s row-
sequential readout, detector blur, pinhole blur, enlargement, and the variables involved in producing
radiographic images such as tube current, and exposure time. Taking all of this into account will
provide a solid foundation for future research on focal spot imaging tailored to this detector.8

Figure 2 - Labelled x-ray tube with a rotating anode.

Figure 1 – The size of the effective focal spot depends on the angle of the anode. Although the small
angle (𝜙1) anode and large angle (𝜙2) anode are struck by the same width electron beam, the effective
focal spot size for the small angle anode (left) is smaller than for the anode with the larger angle (right).

6

Figure 4 - X-ray tube showing the filament which is heated to produce electrons. The filament
is located within the focusing cup, which directs the electron beam towards the focal spot

track on the anode disk.

Figure 3 - Rotating anode with a tungsten / rhenium target disk. Most of the disk is
Molybdenum, the circular track is the tungsten / rhenium alloy. X rays are generated when

electrons from the cathode bombard the anode.

7

2.0 Theoretical Framework

2.1 Pinhole Imaging
A pinhole projects an inverted image from a light source onto a screen. The size of this image

depends on the relative positions of the pinhole, the light source, and the screen. As the distance
between the pinhole and the screen increases, the image becomes larger but also dimmer. This
relationship is illustrated in Figure 5, where an increased pinhole-to-screen distance results in a
larger but fainter image. The faintness arises because the same amount of light (represented by the
coloured lines) is spread over a larger area. This behaviour describes photon fluence (Φ).

 Φ =
𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

𝑎𝑟𝑒𝑎
 [1]

 Since the number of photons passing through the pinhole remains constant if the source-to-pinhole
distance does not change, increasing the screen distance causes the image to cover a larger area,
reducing photon fluence and thus making the image dimmer.

The distance between the light source and the
pinhole also affects the image. The intensity of light
from a point source follows the inverse-square law,
meaning it decreases as the inverse square of the
distance from the source:

 𝜙 =
𝑃

4𝜋𝑟2
 [2]

where 𝜙 is the fluence rate of the light, 𝑃 is the power
of the light source, and 𝑟 is the distance from the
source. As the source-to-pinhole distance
decreases, more photons pass through the pinhole,
increasing image brightness. However, for fixed
detector locations, this also enlarges the image,
causing the photons to be distributed over a greater
area, reducing their concentration and making the
image dimmer.

Conversely, increasing the source-to-pinhole distance reduces image enlargement if the source to
detector distance is kept constant, but also decreases brightness due to the inverse-square law. This
trade-off between image size and brightness is a fundamental characteristic of pinhole imaging. For
math and simplicity, the described distances will be denoted as variables:

𝑑1 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑜 𝑝𝑖𝑛ℎ𝑜𝑙𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑2 = 𝑝𝑖𝑛ℎ𝑜𝑙𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑑3 = 𝑠𝑜𝑢𝑟𝑐𝑒 𝑡𝑜 𝑑𝑒𝑡𝑒𝑐𝑡𝑜𝑟 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

Thus, 𝑑3 = 𝑑1 +𝑑2

Figure 5 - Comparing enlargement and fluence for
changing pinhole-to-detector distances.

Figure 6 - Labelled distances.

8

As previously mentioned, changing the relative distances within the set up affects the size of the
projected image. This enlargement is calculated using the following relationship:

 𝐸 =
𝐻𝑖

𝐻𝑜
 , [3]

where 𝐻𝑖 is the size of the image, and 𝐻𝑜 is the size of the object. The image size and object size can
be calculated algebraically, using 𝑑2 and 𝑑3 as:

 𝐸 =
𝑑2

𝑑3−𝑑2
 . [4]

As 𝑑2→ 𝑑3, the enlargement factor 𝐸 →∞. In this case, the image becomes excessively magnified
and blurred, while the reduced photon fluence makes the image too dim to be distinguishable.
Conversely, as 𝑑2 → 0, the enlargement factor approaches zero (𝐸 → 0), causing the image to shrink
until it is just the pinhole aperture filled with light.

2.2 Blur and Detector Resolution
Pinhole imaging introduces two primary sources of blur: pinhole blur and detector blur. Each type of
blur is influenced by the geometric relationships between the pinhole, the source, and the detector.

2.2.1 Pinhole Blur

The blur caused by the finite size of the pinhole is known as the pinhole’s point spread function (PSF).
Since a physical pinhole has a finite diameter 𝑝, light rays from a single point of the focal spot spread
out, forming a small, blurred circle on the detector. The size of this blur in the detector plane, 𝐵𝑝′,
depends on both the pinhole diameter 𝑝 and the distance 𝑑2 between the pinhole and the detector:

 𝐵𝑝
′ =

𝑝𝑑3

𝑑3−𝑑2
 [5]

To express the blur in the source plane, 𝐵𝑝, we divide by the enlargement fact 𝐸 = 𝑑2

𝑑3−𝑑2
, yielding:

 𝐵𝑝 =
𝐵𝑝
′

𝐸
=

𝑝𝑑3

𝑑3−𝑑2
×
𝑑3−𝑑2

𝑑2
= 𝑝 (

1

𝐸
+1) , [6]

where, as 𝑑2 increases, it enlarges the image while also spreading out the pinhole blur over a larger
area. This effectively reduces the blur in the source plane. Decreasing the pinhole size 𝑝 also reduces
blur but at the cost of lower light throughput, which would make the image dimmer.

9

2.2.2 Detector Resolution

Detector resolution refers to the smallest detail that can be distinguished by the detector and is
typically measured in line pairs per millimeter (𝑙𝑝/𝑚𝑚), where one line pair consists of one black line
and one white line. In digital detectors, resolution is influenced by pixel size, as smaller pixels allow
for better spatial resolution. However, in detectors using a scintillator, light spread within the
scintillator causes blurring before reaching the pixels, which can limit the resolution independently
of pixel size. Higher 𝑙𝑝/𝑚𝑚 values correspond to better resolution, as more line pairs can be resolved
within one millimeter. Enlarging the image does not improve the detector's spatial resolution, but it
does improve the image resolution by spreading the image over a larger area, allowing finer details to
become more distinguishable.

Figure 7 shows a resolution test strip placed directly on the Hamamatsu detector. The test strip
consists of multiple labeled sections, each corresponding to a specific line pairs per millimeter
(𝑙𝑝/𝑚𝑚) value. Each section contains exactly five line pairs (four black lines and five white spaces
with a black background). Figure 8 provides a magnified view of the 5 and 8 𝑙𝑝/𝑚𝑚 sections. While
each section contains only five line pairs, the lp/mm value represents how many of these pairs would
fit within a millimeter if the pattern were extended.

Figure 9 shows three additional zoomed-in views of the test strip, each captured at a different angle
relative to the detector's pixel pattern. The test strip, which was placed horizontally along the
detector, meaning its line pairs are vertical along the detector, seems to show the best resolution;
this is most likely due to the row-sequential readout of the detector.

Figure 8 - Zoomed in resolution test strip showing
distinct line pairs (5 and 8) per millimeter.

Figure 7 - Resolution test strip placed directly on the Hamamatsu detector. The
test strip is placed vertically, but the line pairs are horizontal along the detector.

10

Figure 9 - Zoomed in resolution test strip images taken with the Hamamatsu S11684-12 detector.
The images show the strip from 16 𝑙𝑝/𝑚𝑚 to 20 𝑙𝑝/𝑚𝑚. The strip was placed diagonally (top),

horizontally (middle), and vertically (bottom) along the detector.

11

2.2.3 Detector Blur

Detector blur arises from three main factors: pixel size, scintillator light spread, and noise. Each of
these components influences the sharpness and clarity of the captured image.

The pixel size of the detector strongly influences the spatial resolution, but also contributes to blur
by limiting the smallest detail that can be accurately captured. The Hamamatsu detector uses a
thallium-doped cesium iodide (𝐶𝑠𝐼(𝑇𝑙)) scintillator.9 When x-rays hit the scintillator, they are
converted into visible light, which is then detected by the underlying sensor. This conversion process
is not localized because light spreads by a small amount within the scintillator, causing the image to
blur.

The amount of light spread depends on the scintillator's thickness and material properties, with
thicker scintillators producing more blur due to increased light diffusion.10 The 𝐶𝑠𝐼(𝑇𝑙) scintillator
exhibits an afterglow of 0.3% at 100 𝑚𝑠,7 meaning a small residual emission of light persists briefly
after exposure ends, which can further reduce image sharpness.

Noise in the detector system arises from several sources, including fixed pattern noise and readout
noise. Fixed pattern noise stems from variations in pixel responsivity, meaning that identical radiation
intensities produce varying output signals across the detector. For the Hamamatsu detector, this
variation is given as a sensitivity fluctuation of ± 30%, meaning the pixel response can vary by up to
30% from the average value. Readout noise, on the other hand, results from fluctuations during
signal transfer out of the chip and can introduce additional blur to the image.

The combination of these three effects blurs the image, reducing the ability to resolve fine details.
While the intrinsic blur caused by the detector remains constant, magnification increases the
number of pixels the image covers, allowing for finer details to become more distinguishable. Thus,
detector blur (𝐵𝑑) depends on the intrinsic blur of the detector, 𝛼, and the enlargement of the image:

 𝐵𝑑 =
𝛼

𝐸
 [7]

2.2.4 Total Blur

The total blur of the image is a combination of blur from the pinhole and blur from the detector. Since
the two sources of blur are independent, their combined effect is calculated by adding them in
quadrature. Adding the blurs directly would overestimate their total effect, so each contribution is
squared to represent its area of influence, then summed, and the square root of this sum gives the
total blur (𝐵𝑡𝑜𝑡) as a function of enlargement:

 𝐵𝑡𝑜𝑡(𝐸) = √𝐵𝑝
2 +𝐵𝑑

2 = √(
𝑝

𝐸
+ 𝑝)

2

+ (
𝑎

𝐸
)
2

 [8]

Simplifying Equation 8 gives us the total blur of the image in the focal spot plane:

 𝐵𝑡𝑜𝑡(𝐸) =
√𝑎2+𝑝2(𝐸+1)2

𝐸
 [9]

We seek the enlargement, 𝐸, for which blur is minimized. Setting 𝜕𝐵𝑡𝑜𝑡
𝜕𝐸

= 0 and solving for 𝐸:

12

 𝜕𝐵𝑡𝑜𝑡

𝜕𝐸
= −

𝑝2𝐸+𝑝2+𝛼2

𝐸2√𝑎2+𝑝2(𝐸+1)2
 [10]

 −
𝑝2𝐸+𝑝2+𝛼2

𝐸2√𝑎2+𝑝2(𝐸+1)2
= 0 [11]

 𝐸 =
−𝑝2−𝛼2

𝑝2
 [12]

With 𝐸 = 𝑑2

𝑑3−𝑑2

 𝑑2 = 𝑑3 (1 +
𝑝2

𝛼2
) [13]

To minimize the total blur, apparently the pinhole must be behind the focal spot, which is impossible,
thus from Equation 9, the most accurate focal spot image will have its blur minimized by taking 𝐸 to
be as large as possible.

2.3 Flat Field Correction
Flat Field Correction (FFC) is the standard calibration technique for digital imaging, which mitigates
a detector’s pixel-to-pixel variation and illumination irregularities.11 It compensates for differences in
pixel gains and dark currents, where dark current is a small random generation of electrons within
the depletion region of the detector. Flat fielding an image will allow for a uniform signal to produce
a uniform output. In an ideal FFC-corrected image, the background values will be uniform, and the
imaged object will be clearly represented.

FFC works independently on each pixel of a detector. The process requires three raw radiographic
inputs, where raw denotes that the images have not been processed. The three raw images are: a raw
x-ray image (X), a dark image (D), and a gain image (G). In the case of pinhole imaging, X is a pinhole
image. The total procedure follows:

 𝐹𝐹𝐶 =
(𝑋−𝐷)⟨𝐺−𝐷⟩

(𝐺−𝐷)
 [14]

The (𝑋 −𝐷) term removes the background, including contributions from detector noise and dark
current, leaving just the relevant signal from the x-ray image. Then each pixel is multiplied by the
average ⟨(𝐺 − 𝐷)⟩, which represents the average pixel sensitivity across the detector after
accounting for the background. Multiplying by this average value ensures each pixel is properly
scaled. Finally, dividing by the corrected gain (𝐺 − 𝐷) ensures the individual pixel corrections are
normalized and consistent across the image. As a result of this process, lower-level pixels are
brightened, and higher-level pixels are darkened. This is shown in Figure 10.

13

2.4 Row Sequential Readout and Normalization
Detectors with row-sequential readout, such as complementary metal-oxide semiconductor
(CMOS) sensors, often exhibit significant variations in readout timing between rows compared to the
timing between columns. Row-sequential readout is a method where image data are extracted from
the sensor line by line, progressing from one end of the sensor to the other. In sensors with
1000 ×1500 pixel array (like the Hamamatsu detector), this means that the data from the first pixel
in the top left are read out 1000 pixels before the pixel directly below that. The time difference
between rows is much larger than between columns, leading to visible variations in row intensity.
This can result in images with noticeable differences, such as alternating dark and light rows.

Since the Hamamatsu sensor employs a row-sequential readout, this introduces the need for a row-
specific normalization factor to correct for row-dependent variations in pixel values.

Some detectors (like the Hamamatsu detector) also contain shielded pixels, which are used in their
built-in automatic correction systems. To ensure proper normalization from the raw image data (from
manual mode), a mask is applied to eliminate the values of the shielded pixels from the manual
calculation.9

There will be multiple acquisitions captured and processed to produce an averaged image. Denoting
 𝑛𝐴𝑟,𝑐 for the 𝑛𝑡ℎ matrix of 𝑅 rows and 𝐶 columns, each with pixel values 𝑛𝑎𝑟,𝑐, a formula can be
produced to apply a row normalization.

Figure 10 - Comparison of a raw pinhole x-ray image, and the same image after Flat Field
Correction. The focal spot is almost completely obscured in the raw image.

14

The average pixel value for row 𝑟 is calculated as:

 𝑛(𝐴𝐶)𝑟 =
1

𝐶
∑ 𝑛𝐴𝑟,𝑐
𝐶
𝑐=1 , [15]

where (𝐴𝐶) refers to the fact that the matrix A has been averaged over its columns. Thus, 𝑛(𝐴𝐶)𝑟 is a
column vector of size 𝑅 × 1. The average pixel value 𝑛⟨𝑎⟩ of matrix 𝑛 is:

 𝑛⟨𝑎⟩ =
1

𝑅
∑ 𝑛(𝐴𝐶)𝑟
𝑅
𝑟=1 . [16]

Each row-specific normalization constant 𝑛𝑑𝑟 will be calculated using:

 𝑛𝑑𝑟 =
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)𝑟
 . [17]

• If 𝑛(𝐴𝐶)𝑟 > 𝑛⟨𝑎⟩ → 𝑛𝑑𝑟 < 1
• If 𝑛(𝐴𝐶)𝑟 < 𝑛⟨𝑎⟩ → 𝑛𝑑𝑟 > 1
• If 𝑛(𝐴𝐶)𝑟 = 𝑛⟨𝑎⟩ → 𝑛𝑑𝑟 = 1

This can be expressed as:

 𝑛𝐷 =

[

 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)1
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)2

⋮
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)𝑅]

= [

 𝑛𝑑1
 𝑛𝑑2
⋮

 𝑛𝑑𝑅

] , [18]

where 𝑛𝐷 is an 𝑅 × 1 column vector with each normalization factor 𝑛𝑑𝑟 scaling the corresponding
row 𝑟 in the matrix. Using MATLAB’s element-wise multiplication, the normalized matrix 𝑛𝐴𝑛𝑜𝑟𝑚 is
given by:

 𝑛𝐴𝑛𝑜𝑟𝑚 = 𝑛𝐴𝑟,𝑐 .∗ 𝑛𝐷 , [19]

where 𝑛𝐴𝑟,𝑐 is the original 𝑅 × 𝐶 matrix, and 𝑛𝐷 is the 𝑅 × 1 column vector. The element-wise
multiplication performed in MATLAB can be expressed mathematically as the Hadamard product.12
The Hadamard product (denoted by ⊙) takes in two matrices and multiplies the corresponding
entries of the two matrices. For example, (𝐺 ⊙𝐻)= 𝑄

 [
3 5 7
4 9 8

] ⊙ [
1 6 3
0 2 9

] = [
3 × 1 5 ×6 7 ×3
4 × 0 9 ×2 8 ×9

] [20]

Or, in the case of the row normalization:

[

1 1 1
1 1 1
1 1 1
1 1 1
1 1 1
1 1 1]

⊙

[

1
2
3
4
5
6]

=

[

1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6]

 [21]

Thus, 𝐴𝑛,𝑛𝑜𝑟𝑚 is given by:

 𝑛𝐴𝑛𝑜𝑟𝑚 = 𝑛𝐴𝑟,𝑐 ⊙ 𝑛𝐷 [22]

15

 𝑛𝐴𝑛𝑜𝑟𝑚 = [

 𝑛𝑎1,1 ⋯ 𝑛𝑎1,𝐶
⋮ ⋱ ⋮

 𝑛𝑎𝑅,1 ⋯ 𝑛𝑎𝑅,𝐶
]⊙ [

 𝑛𝑑1
⋮

 𝑛𝑑𝑅

] =

[

 𝑛𝑎1,1 𝑛𝑑1 ⋯ 𝑛𝑎1,𝑐 𝑛𝑑1 ⋯ 𝑛𝑎1,𝐶 𝑛𝑑1

⋮ ⋱ ⋮ ⋮
 𝑛𝑎𝑟,1 𝑛𝑑𝑟

⋮
 𝑛𝑎𝑅,1 𝑛𝑑𝑅

⋯

⋯

 𝑛𝑎𝑟,𝑐 𝑛𝑑𝑟
⋮

 𝑛𝑎𝑅,𝑐 𝑛𝑑𝑅

⋯
⋱
…

 𝑛𝑎𝑟,𝐶 𝑛𝑑𝑟
⋮

 𝑛𝑎𝑅,𝐶 𝑛𝑑𝑅]

 [23]

This approach leads to two possible methods for multiple radiographic images. Method one, where
each image is normalized before averaging them, and method two, where the images are averaged
into one image, and then normalized.

Method one: normalized and then averaged (NTA), using Equation 23, is given by:

 𝑁𝑇𝐴 =
1

𝑁
∑ [𝑛𝐴𝑛𝑜𝑟𝑚]
𝑁
𝑛=1 [24]

Method two: averaged and then normalized (ATN), is given by:

 𝐴𝑇𝑁 = [
1

𝑁
∑ 𝑛𝐴𝑟,𝑐
𝑁
𝑛=1]⊙(𝐷𝑁) [25]

Where (𝐷𝑁) is calculated using the averaged matrix (𝐴𝑁)𝑟,𝑐.

The difference between a FFC image and a normalized FFC image (using ATN) is illustrated below.
The normalized image clearly reduces the black and white stripes from the row sequential readout
of the detector.

Figure 11 - Comparison of a FFC image (left), and the same image after using method two of normalization,
averaging then normalizing (right). This uses the same image as Figure 10.

16

3.0 Methods and Materials

3.1 Experimental Set up
 The detector used was the Hamamatsu S11684-12
complementary metal-oxide semiconductor (CMOS) area image
sensor with a row-sequential readout. It consists of 1000 × 1506
pixels, each measuring (20× 20)𝜇𝑚2, resulting in an effective
image size of (20× 30)𝑚𝑚2 when ignoring the shielded pixels.
The shielded regions are divided into upper and lower sections:
the lower section comprises the bottom three rows, each with
1000 columns, while the upper section includes the top three
rows and two triangular areas extending 114 pixels down and 114
pixels inwards on each side due to the detector’s shape. Figure
12 illustrates the detector’s dimensions. The sensor supports
USB 2.0 connectivity and required a powered USB for operation.

The powered USB used during testing was the 5-meter StarTech
USB 2.0 Active Extension Cable (model #USB2AAEXT5M). The
powered USB connected the detector to the lab’s Windows 10
computer, where the Hamamatsu S11684/S11685 Image Acquisition Application was used to
capture images. This software is designed to evaluate the Hamamatsu S11684-12 detector and
supports both manual and automatic capture modes. Due to the limited photon fluence from the
pinhole, all images were captured using manual mode.

A custom case was 3D-printed by a colleague, Jack Rubio, to securely hold the detector. Its
dimensions, shown in Figure 13, were designed to fit the detector snugly, relying on gravity to keep it

Figure 12 - Hamamatsu S11684-12 detector
pixel layout.

Figure 13 - Side, top, and front view of the 3D printed Hamamatsu S11648-12 detector case.

17

in place. Green painter’s tape was applied to prevent any
shifting within the case. Additionally, screw holes in the
bottom of the case allowed it to be secured to a larger
structure, preventing tipping.

The x-ray generator was the Picker GX550, a single-phase
generator commonly used for medical imaging. It
includes adjustable controls for exposure time, mA, and
kVp. Paired with the generator was the Picker Dunlee PX
412A x-ray tube (insert model #DU304), with
specifications shown in Figure 14. The x-ray tube has two
focal spots: a small focal spot with a nominal value of 0.6
and a large focal spot with a nominal value of 1.2.

The imaging setup utilized RaySafe (formerly Fluke Biomedical) x-ray pinholes.13 Available were a 30
𝜇𝑚 pinhole (model 07–613) and a 75 𝜇𝑚 pinhole (model 07–617), both with diaphragms composed
of a 90:10 gold-platinum alloy. A DVD stand, the Atlantic Onyx 28 DVDs Blurays Tower Wall Mounted
Or Free Standing (Matte Black) 1331 was chosen by Eva Anderson to hold the pinhole for imaging.14
It has a height of 50.8 𝑐𝑚, a width of 21.59 𝑐𝑚, and a depth of 9.52 𝑐𝑚. The shelves are spaced
roughly 19 𝑚𝑚 apart, with slight variations between 18 − 20 𝑚𝑚. The shelves adequately
accommodated the pinhole, which was affixed to a CD disk case using green painters tape, as
illustrated in Figure 15.

To ensure alignment with the central axis, Dr. Tong Xu provided a hollow metal pipe (Figure 16) that
he modified by machining one end flat to allow it to stand upright. Radiographs were then captured
with the pipe placed directly on the detector. To achieve proper alignment, the detector was adjusted
until the radiographic image of the pipe displayed a perfect circle. If the image appeared thicker in
one direction, the detector was repositioned toward the thicker side of the pipe's radiographic
projection to correct the misalignment.

Figure 14 - X-ray Tube Serial Plate.

Figure 15 - Pinhole placement using the DVD shelving unit. Front view (left) and top view (right) show the pinhole being
aligned with roughly the centre of the stand.

18

3.2 Capturing a Radiographic Pinhole Image
To capture a radiographic pinhole image using the Hamamatsu S11684-12 detector, the following
procedure was performed:

Device Setup:

1. Connect all devices:
• USB power cord
• Detector to USB
• USB to computer

2. Turn on the computer and open the image
acquisition software when all devices are plugged
in.

Software configuration: Navigate to Settings > Image Acquisition:

I. Set Integration mode to “For X-ray image acquisition.”
II. Deselect “Subtract the stored dark image for fast acquisition.”

III. Select “Raw image” in the Image type dropdown.
IV. Set Integration time to 1000 𝑚𝑠 and click “OK.”

Detector Alignment:

1. Position the detector in the DVD stand at the preferred height (𝑑3).
2. Turn on the x-ray generator and set milliamperes, exposure time, and accelerating potential.
3. Align the detector with the central axis using the hollow metal pipe.
4. Secure the detector with tape and record the distance to the focal spot (𝑑3).

Pinhole Placement and Image Acquisition:

5. Place the pinhole at 𝑑2 ≅ 10 𝑐𝑚 from the detector to increase the brightness of the image
for alignment.

6. Spin the rotor, then click “Acquire Image” and immediately generate x-rays within the set
integration time. If the focal spot cannot be seen, check pinhole alignment.

Fine-Tune Pinhole Alignment:

7. Adjust the pinhole height (𝑑2) in small increments to keep the pinhole centered in the image
until the desired enlargement is reached.

8. Measure its height relative to the detector (𝑑2), from the top of the pinhole to the top of the
detector.

9. Reduce the Integration time down to 500 𝑚𝑠 to minimize noise.

Capture and Save Images: Acquire and save the following as 16-bit TIFFs:

• 10 RAW pinhole images.
• 10 RAW dark images.
• 10 RAW gain images.

Figure 16 - Hollow pipe front view (left) and top view (right).

19

Shutdown: Turn off the computer and the x-ray generator, and unplug all devices.

 3.3 Measuring Nominal Value
The focal spot measurement is performed using a custom MATLAB (R2024b) script
(Nominal_Value_Finder.m, Appendix A.1) that applies FFC and row-sequential readout
normalization to raw x-ray image data. The script outputs the focal spot dimensions (width and
height) in both pixels and millimeters.

Image Input and Preprocessing: The script (Appendix A.2) accepts three sets of 16-bit 𝑇𝐼𝐹 images:

• Raw x-ray images

• Raw dark images

• Raw gain images

Each image is converted into a 1000 × 1506 numerical
array. A custom mask is applied to exclude shielded
pixels from all subsequent calculations.

The script (Appendix A.2.i) averages the input arrays
to produce:

• An averaged x-ray array

• An averaged dark array

• An averaged gain array

The ATN technique (Equation 25) is applied to these
averaged arrays. (Appendix B)

Normalization and Output: A manual column selection
function allows the user to exclude the focal spot
region from row-wise normalization. This is performed
by selecting a section from the averaged x-ray array
and is then applied across the dark and gain arrays
using the same selection. Flat field correction
(Equation 14) is performed using the three averaged
arrays, resulting in a corrected image array. This
corrected array is saved as both a 𝑇𝐼𝐹 image and a
𝑀𝐴𝑇 data file to preserve data integrity.

The script (Appendix A.3) then automatically adjusts
the window and level of the corrected array to produce
a visually enhanced version (Figure 17).

Focal Spot Analysis: The user provides input parameters:

• Pinhole size

Figure 17 - A fully normalized and FFC image of the Large focal
spot. This image is not rotated or cropped, but is corrected for

window and level.

20

• Distances 𝑑2 and 𝑑3

Using the displayed image (Figure 17), the user
selects a region of interest (ROI) containing:

• The focal spot (now visible after
correction and adjustment)

• A background area big enough for
comparison

This ROI is cropped, and the user aligns the focal
spot horizontally and vertically to simplify the
procedure and calculations. The script applies the
MATLAB 𝑖𝑚𝑟𝑜𝑡𝑎𝑡𝑒 function (using "nearest"
interpolation) to perform the alignment, where the
output pixel takes the value of the nearest input
pixel without considering surrounding values.

The user selects two additional ROIs (Figure 18)
from the now cropped and rotated image:

1. Focal Spot ROI: Encompassing the entire
focal spot without excess background.

2. Background ROI: Excluding the focal spot
and occupying as large an area as
possible.

The script projects the aligned focal spot into
horizontal and vertical intensity vectors to
calculate its dimensions in both pixels and
millimeters. Enlargement (𝛦) and total blur (𝛣𝑡𝑜𝑡)
are computed and used to adjust these
measurements.

Final Output: The script outputs the corrected
focal spot width and height measurements and
prompts the user to save the final .𝑀𝐴𝑇 data file,
concluding the analysis. The calculated
dimensions can subsequently be converted into a
nominal focal spot value.

Figure 18 - Screenshot of the Focal Spot (top) and Background
(bottom) ROI selection. These are the cropped and rotated

versions of the image in Figure 17.

21

4.0 Analysis

4.1 Matrix Analysis
To compare the performance of the two normalization methods, NTA and ATN, a series of controlled
tests were conducted. These tests were designed to assess each method’s ability to handle small
fluctuations in an otherwise constant dataset. The objectives of these tests were as follows:

• Minimizing row-wise deviations.
• Reducing the impact of the deviations on the rest of the matrix after normalization.
• Minimizing computation time.

For the simplest test, three initial matrices 1𝐴𝑟,𝑐, 2𝐴𝑟,𝑐, and 3𝐴𝑟,𝑐 were established. 1𝐴𝑟,𝑐 was given
a single fluctuation, but 2𝐴𝑟,𝑐 and 3𝐴𝑟,𝑐both contained only a constant value. The matrices were:

 1𝐴𝑟 ,𝑐 =

[

𝟏𝟏 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 [26]

 2𝐴𝑟,𝑐 = 3𝐴𝑟,𝑐 =

[

10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 [27]

The bolded number in 1𝐴 is the fluctuation. With these three matrices, ATN and NTA will be shown
below. To follow the fluctuation’s effect on the rest of the matrix/matrices, if a number is affected by
the fluctuation, the number will be in bold.

Averaging, Then Normalizing (ATN)

ATN can be calculated in five steps with each matrix having 𝑟 = 1 → 𝑅 = 5 rows, 𝑐 = 1 → 𝐶 =

5 columns, and 𝑛 = 1 → 𝑁 = 3 matrices.

Step 1: Average over 𝑁, where (𝐴𝑁)𝑟,𝑐 will denote that the matrix 𝑛𝐴𝑟,𝑐 has been averaged over N:

 (𝐴𝑁)𝑟,𝑐 =
1

𝑁
∑ 𝑛𝐴𝑟,𝑐
𝑁
𝑛=1 [28]

 (𝐴𝑁)𝑟,𝑐 =
1

3

[

𝟏𝟏 + 10+ 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10
10+ 10 + 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10
10+ 10 + 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10
10+ 10 + 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10
10+ 10 + 10 10+ 10 + 10 10+ 10+ 10 10 + 10+ 10 10+ 10 + 10]

 [29]

 =

[

𝟏𝟎.𝟑𝟑̅̅̅̅ 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 [30]

22

Step 2: Average each row using Equation 15, where (𝐴𝑁𝐶)𝑟 will denote that the matrix 𝑛𝐴𝑟,𝑐 has
been averaged over both 𝑁 and 𝐶:

 (𝐴𝑁𝐶)𝑟 =
1

𝐶
∑ (𝐴𝑁)𝑟,𝑐
𝐶
𝑐=1 =

1

5

[

𝟏𝟎.𝟑𝟑̅̅̅̅ + (4× 10)

5× 10
5× 10
5× 10
5× 10]

=

[

𝟏𝟎.𝟎𝟔𝟔̅̅̅̅
10
10
10
10]

 [31]

Step 3: Average the columns of (𝐴𝑁𝐶)𝑟 to determine the average pixel value, ⟨𝑎𝑁⟩, of the matrix
(𝐴𝑁)𝑟,𝑐:

 ⟨𝑎𝑁⟩ =
1

𝑅
∑ (𝐴𝑁𝐶)𝑟
𝑅
𝑟=1 =

1

5
(𝟏𝟎.𝟎𝟔𝟔̅̅̅̅ + 10+ 10+ 10 + 10) = 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ [32]

Step 4: Calculate the row-specific normalization constant (𝑑𝑁)𝑟 =
⟨𝑎𝑁⟩

(𝐴𝑁𝐶)𝑟
, where (𝑑𝑁)𝑟 uses the

matrix (𝐴𝑁𝐶)𝑟 which was averaged over 𝑁:

 (𝐷𝑁) =

[

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟔𝟔̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

10
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

10
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

10
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

10]

=

[

𝟎.𝟗𝟗𝟒𝟕𝟎𝟏𝟗𝟗
𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅]

 [33]

Step 5: ATN can be calculated with Equation 25:

 𝐴𝑇𝑁 = (𝐴𝑁)𝑟,𝑐 ⊙(𝐷𝑁) [34]

 𝐴𝑇𝑁 =

[

𝟏𝟎.𝟑𝟑̅̅̅̅ 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

⊙

[

𝟎. 𝟗𝟗𝟒𝟕𝟎𝟏𝟗𝟗
𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅

𝟏.𝟎𝟎𝟏𝟑𝟑̅̅̅̅]

 [35]

 𝐴𝑇𝑁 =

[

𝟏𝟎.𝟐𝟕𝟖𝟓𝟖𝟕𝟐 𝟗.𝟗𝟒𝟕𝟎𝟏𝟗𝟗 𝟗.𝟗𝟒𝟕𝟎𝟏𝟗𝟗 𝟗. 𝟗𝟒𝟕𝟎𝟏𝟗𝟗 𝟗.𝟗𝟒𝟕𝟎𝟏𝟗𝟗
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅]

 [36]

Normalizing, Then Averaging (NTA)

NTA can be calculated using the same notation as above.

23

Step 1: Average over the rows of each matrix using Equation 15, where 𝑛(𝐴𝐶)𝑟 will denote that the
matrix 𝑛𝐴𝑟,𝑐has been averaged over 𝐶:

 1(𝐴𝐶)𝑟 =

[

𝟏𝟎.𝟐
10
10
10
10]

 [37]

 2(𝐴𝐶)𝑟 = 3(𝐴𝐶)𝑟 =

[

10
10
10
10
10]

 [38]

Step 2: Average the columns of each matrix using Equation 16 to determine the average pixel value,
 𝑛⟨𝑎⟩, of each matrix:

 1 ⟨𝑎⟩ = 𝟏𝟎.𝟎𝟒 [39]

 2⟨𝑎⟩ = 3⟨𝑎⟩ = 10 [40]

Step 3: Calculate the row-specific normalization constant 𝑛𝑑𝑟=
 𝑛⟨𝑎⟩

 𝑛(𝐴𝐶)𝑟
, using Equation 17:

 1𝐷 =

[

𝟏𝟎.𝟎𝟒

𝟏𝟎.𝟐
𝟏𝟎.𝟎𝟒

10
𝟏𝟎.𝟎𝟒

10
𝟏𝟎.𝟎𝟒

10
𝟏𝟎.𝟎𝟒

10]

=

[

𝟎.𝟗𝟖𝟒𝟑𝟏𝟑𝟕𝟐

𝟏.𝟎𝟒
𝟏.𝟎𝟒
𝟏.𝟎𝟒
𝟏.𝟎𝟒]

 [41]

 2𝐷 = 3𝐷 =

[

1
1
1
1
1]

 [42]

Step 4: Normalize the individual matrices using Equation 22:

 1𝐴𝑛𝑜𝑟𝑚 =

[

𝟏𝟏 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 ⊙

[

𝟎. 𝟗𝟖𝟒𝟑𝟏𝟑𝟕𝟐

𝟏.𝟎𝟒
𝟏.𝟎𝟒
𝟏.𝟎𝟒
𝟏.𝟎𝟒]

 [43]

 1𝐴𝑛𝑜𝑟𝑚 =

[

𝟏𝟎.𝟖𝟐𝟕𝟒𝟓𝟏 𝟗.𝟖𝟒𝟑𝟏𝟑𝟕𝟐 𝟗. 𝟖𝟒𝟑𝟏𝟑𝟕𝟐 𝟗.𝟖𝟒𝟑𝟏𝟑𝟕𝟐 𝟗.𝟖𝟒𝟑𝟏𝟑𝟕𝟐
𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒
𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒
𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒
𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒 𝟏𝟎.𝟎𝟒]

 [44]

24

 2𝐴𝑛𝑜𝑟𝑚 = 3𝐴𝑛𝑜𝑟𝑚 =

[

10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

⊙

[

1
1
1
1
1]

=

[

10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10
10 10 10 10 10]

 [45]

Step 5: NTA can be calculated using Equation 24:

 𝑁𝑇𝐴 = 1

𝑁
∑ [𝑛𝐴𝑛𝑜𝑟𝑚]
𝑁
𝑛=1 =

[

𝟏𝟎.𝟐𝟕𝟓𝟖𝟏𝟕 𝟗.𝟗𝟒𝟕𝟕𝟏𝟐 𝟗. 𝟗𝟒𝟕𝟕𝟏𝟐 𝟗.𝟗𝟒𝟕𝟕𝟏𝟐 𝟗. 𝟗𝟒𝟕𝟕𝟏𝟐
𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅

𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅ 𝟏𝟎.𝟎𝟏𝟑𝟑̅̅̅̅]

 [46]

Both methods produced similar results. Comparing Equations 36 and 46 by analyzing the specific
fluctuation point 𝑟, 𝑐 = 1,1:

The difference Δγ1,1 between the fluctuation and the normalized arrays are:

 Δγ1,1,𝐴𝑇𝑁 = 11− 10.278587 = 0.𝟕𝟐𝟏413 [47]

 Δγ1,1,𝑁𝑇𝐴 = 11− 10.275817 = 0.𝟕𝟐𝟒183 [48]

where, since Δγ1,1,𝑁𝑇𝐴 > Δγ1,1,𝐴𝑇𝑁, NTA better minimizes the fluctuation at the deviation point.
Similarly, analyzing the row of the fluctuation (𝑟 = 1) for values where 𝑐 ≠ 1, finds:

 𝛥𝛾1,𝑐≠1,𝐴𝑇𝑁 = 10− 9.9470199 = 0.0𝟓𝟐𝟗801 [49]

 𝛥𝛾1,𝑐≠1,𝑁𝑇𝐴 = 10− 9.9477124 = 0.0𝟓𝟐𝟐876 [50]

Here, 𝛥𝛾1,𝑐≠1,𝑁𝑇𝐴 < 𝛥𝛾1,𝑐≠1,𝐴𝑇𝑁, indicating that NTA reduces the impact of the fluctuation on
neighbouring values in the same row compared to ATN.

As shown between Equations 36 and 46, non-deviated rows are affected by the same amount no
matter the condition performed.

The computational demands of NTA are higher than those of ATN, particularly as the number of input
matrices increases. For cases with low 𝑁, NTA is preferred due to its superior ability to limit the
propagation of fluctuations. The number of matrices involved in calculations for the purpose of
nominal value measurements will be low, thus NTA is the preferred method.

4.1 Analyzing the Effective Focal Spot Data
As outlined in Section 1.2, the goal of this research is to measure the nominal value of the focal spots
using the Hamamatsu detector in compliance with IEC requirements. The relevant IEC criteria
(Section 6.3.2) include:

a) The number of pixels over the 15% width of the line spread function is at least 60.
b) The signal to noise ratio (SNR) must be greater than 100.
c) The number of levels between the background level and maximum signal of the focal spot

must be 200 or more.
d) The image must be aligned within 1° of the reference axis.

25

Analysis of the images revealed several challenges:

• The SNR consistently fell below 100, failing to meet IEC compliance.
• Aligning the image within 1° of the reference axis was difficult, as the tube is enclosed in a

metal case and not visible for exact measurements.

Thus, only the tests that met both criteria (a) and (c) were selected for detailed examination. Tests
that failed to meet these requirements, such as all the small focal spot tests using the 30 𝜇𝑚 pinhole,
which all failed due to the signal level being below 200, were excluded from further analysis.

To ensure consistency in testing and measurements, all pixel values from the passing tests were
rescaled to a range of 0 to 65,000 (approximately 16-bits). This rescaling was performed only after
verifying that the signal difference between the maximum intensity and the background met the IEC’s
required 200 level difference. Line spread functions were then projected from these rescaled values
and all evaluations are performed below. The passing test’s conditions are summarized in Table 1.

Table 1 - Test Conditions and Enlargement Measurements of both the large focal spot (Tests A to F) and small focal spot
(Tests G to J).

Test
Focal
Spot

(𝒅𝟑± 𝟏𝟎)
𝒎𝒎

(𝒅𝟐 ±𝟏𝟎)
𝒎𝒎

Enlargement
(𝑬)

Pinhole Size
±𝟎.𝟎𝟎𝟓 𝒎𝒎

Tube Current
(𝒎𝑨)

Exposure
Time (𝒎𝒔)

Accelerating
Potential (𝒌𝑽𝒑)

A Large 661 268 0.69 ± 0.024 0.030 200 100 60
B Large 661 283 0.75 ± 0.028 0.030 200 100 60
C Large 661 298 0.82 ± 0.032 0.030 200 100 60
D Large 681 294 0.76 ± 0.028 0.075 200 100 60
E Large 623 256 0.70 ± 0.027 0.030 200 200 60
F Large 623 298 0.92 ± 0.040 0.030 200 200 60
G Small 681 322 0.90 ± 0.035 0.075 50 200 60
H Small 681 367 1.17 ± 0.053 0.075 100 100 60
I Small 681 379 1.26 ± 0.059 0.075 50 200 60
J Small 681 379 1.26 ± 0.059 0.075 100 200 60

The enlargement factor (𝐸) is calculated using Equation 4. With its uncertainty propagated as
follows:

 𝜎𝐸 = √(
𝜕𝐸

𝜕𝑑3
𝜎𝑑3)

2

+ (
𝜕𝐸

𝜕𝑑2
𝜎𝑑2)

2

 [51]

 𝜎𝐸 = √(
−𝑑2𝜎𝑑3
(𝑑3−𝑑2)2

)
2

+ (
𝑑3𝜎𝑑2

(𝑑2−𝑑3)2
)
2

 [52]

where 𝜎𝑑3 and 𝜎𝑑2 represent the uncertainties in 𝑑3 and 𝑑2 respectively.

Using the MATLAB scripts mentioned in Section 3.3, the tests from Table 1 output the corrected focal
spot height and width measurements by calculating the total blur (𝐵𝑡𝑜𝑡) in the source plane from
Equation 9. The detector blur 𝛼 is related to the spatial resolution 𝑅 in 𝑙𝑝/𝑚𝑚 by:

 𝛼 =
1

2
×
1

𝑅
 [53]

26

where the factor of ½ accounts for halving the line pairs, ensuring 𝛼 is expressed in millimeters. From

Figure 9, the resolution is approximately (18 ± 1) 𝑙𝑝

𝑚𝑚
, so the intrinsic blur of the detector can be

calculated as:

 𝛼± 𝜎𝛼 =
1

2∗18
± √(

−1

2(18)2
)
2

 = (0.028 ± 0.0015) 𝑚𝑚 [54]

Table 2 provides pinhole dimensions and their uncertainties from RaySafe, which are incorporated
into total blur calculations.

Table 2 - Pinhole dimensions and their uncertainties.

Propagating Equation 9 with the errors calculated above, the error on the total blur 𝜎𝐵𝑡𝑜𝑡 is calculated
as:

 𝜎𝐵𝑡𝑜𝑡 = √(
𝛼 𝜎𝑎𝑙𝑝ℎ𝑎

𝐸√𝑎2+𝑝2(𝐸+1)2
)
2

+ (
(−𝛼2−𝑝2(𝐸+1))𝜎𝐸

𝐸2√𝑎2+𝑝2(𝐸+1)2
)
2

+ (
𝑝(𝐸+1)2𝜎𝑝

𝐸√𝑎2+𝑝2(𝐸+1)2
)
2

 [55]

where the total blur for each test is shown in Table 3.

Table 3 – Calculated Total Blur and Uncertainty for each Test.

Test Enlargement
(𝑬)

Pinhole Diameter
(± 𝟎.𝟎𝟎𝟓) 𝒎𝒎

Total Blur
(𝒎𝒎)

A 0.69 ± 0.046 0.030 0.083± 0.0109
B 0.75 ± 0.050 0.030 0.079± 0.0105
C 0.82 ± 0.055 0.030 0.074± 0.0101
D 0.76 ± 0.050 0.075 0.175± 0.0128
E 0.70 ± 0.050 0.030 0.082± 0.0109
F 0.92 ± 0.065 0.030 0.069± 0.0096
G 0.90 ± 0.058 0.075 0.161± 0.0115
H 1.17 ± 0.078 0.075 0.141± 0.0100
I 1.26 ± 0.085 0.075 0.136± 0.0096
J 1.26 ± 0.085 0.075 0.136± 0.0096

Model Diaphragm Dimensions (𝒎𝒎)
07-613 0.030 ± 0.005
07-619 0.075 ± 0.005

27

With the total blur and enlargement calculated for each test, the width (𝑊) and height (𝐻) of the
focal spot can now be determined, including uncertainties. Using the MATLAB scripts (Section 3.3),
the effective focal spot dimensions were determined by projecting intensity values along the width
and height directions of the focal spot region to generate one-dimensional line spread functions
(LSF). Some comparison LSFs are shown in Figures 19 and 20.

 Figure 19 – Large Focal Spot: Test B (Top) and Test D (Bottom)

28

The number of pixels exceeding 15% of the maximum intensity was converted into physical
dimensions using:

 𝑊𝑒𝑓𝑓 = 𝑁𝑊 ×0.02 𝑚𝑚 [56]

 𝐻𝑒𝑓𝑓 = 𝑁𝐻 × 0.02 𝑚𝑚 [57]

where 𝑁𝑊 and 𝑁𝐻 represent the number of pixels covering the width and height of the focal spot,
respectively. Since the detector has no explicit uncertainty on pixel size, it is reasonable to assume a
margin of error of ± 0.5 𝜇𝑚 in each pixel. Adding an uncertainty onto the MATLAB script of ± 2 𝑝𝑖𝑥𝑒𝑙𝑠,
the effective width and height uncertainties are calculated as follows:

 𝜎𝑊𝑒𝑓𝑓 = √(0.005 ∗ 𝜎𝑁𝑊)
2
+ (𝑁𝑊 ∗ 𝜎𝑝𝑖𝑥𝑒𝑙 𝑠𝑖𝑧𝑒)

2
 [58]

 = √0.0001 + (𝑁𝑊 ∗ 0.002)2 [59]

 𝜎𝐻𝑒𝑓𝑓 = √0.0001+ (𝑁𝐻 ∗ 0.002)
2 [60]

Figure 20 – Small Focal Spot: Test I (Top) and Test J (Bottom) comparison.

29

Table 4 - Pixel Coverage of the Focal Spot, Calculated in MATLAB.

Test 𝑵𝑾±𝟐 𝒑𝒊𝒙𝒆𝒍𝒔 𝑵𝑯 ±𝟐 𝒑𝒊𝒙𝒆𝒍𝒔 𝑾𝒆𝒇𝒇(𝒎𝒎) 𝑯𝒆𝒇𝒇(𝒎𝒎)

A 70 92 1.40± 0.14 1.84± 0.18
B 75 101 1.50± 0.15 2.02± 0.20
C 83 108 1.66± 0.17 2.16± 0.22

D 82 111 1.64± 0.16 2.22± 0.22

E 65 89 1.30± 0.13 1.78± 0.18
F 82 107 1.64± 0.16 2.14± 0.21
G 55 82 1.10± 0.11 1.64± 0.16
H 64 96 1.28± 0.13 1.92± 0.19

I 71 113 1.42± 0.14 2.26± 0.23

J 69 119 1.38± 0.14 2.38± 0.24

Equation 9 gives the blur in the focal spot plane, so the height and width will be calculated to the
focal spot plane as well. Both the blur and enlargement can be calculated linearly in the focal spot
plane as follows:

 𝑊𝑙𝑖𝑛 =
𝑊𝑒𝑓𝑓

𝐸
− 𝐵𝑡𝑜𝑡 [61]

 𝐻𝑙𝑖𝑛 =
𝐻𝑒𝑓𝑓

𝐸
−𝐵𝑡𝑜𝑡 [62]

Alternatively, quadrature corrections were applied:

 𝑊𝑞𝑢𝑎𝑑 = √(
𝑊𝑒𝑓𝑓

𝐸
)
2

− 𝐵𝑡𝑜𝑡
2 [63]

 𝐻𝑞𝑢𝑎𝑑 = √(
𝐻𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2 [64]

Given two separate ways to calculate the final value, the average of both corrections will be taken.

Finally, the uncertainties on the linear width and height are:

 𝜎𝑊𝑙𝑖𝑛 =
√(

𝜎𝑊𝑒𝑓𝑓

𝐸
)
2

+ (−𝜎𝐵𝑡𝑜𝑡)
2
+ (−

𝑊𝑒𝑓𝑓∗𝜎𝐸

𝐸2
)
2

 [65]

 𝜎𝐻𝑙𝑖𝑛 =
√(

𝜎𝐻𝑒𝑓𝑓

𝐸
)
2

+ (−𝜎𝐵𝑡𝑜𝑡)
2
+ (−

𝐻𝑒𝑓𝑓∗𝜎𝐸

𝐸2
)
2

 [66]

And the uncertainties on the quadrature width and height are:

 𝜎𝑊𝑞𝑢𝑎𝑑 =

√

(

 𝑊𝑒𝑓𝑓∗𝜎𝑊𝑒𝑓𝑓

𝐸2√(
𝑊𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

2

+

(

−

𝐵𝑡𝑜𝑡∗𝜎𝐵𝑡𝑜𝑡

√(
𝑊𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

2

+

(

−

𝑊𝑒𝑓𝑓∗𝜎𝐸

𝐸3√(
𝑊𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

2

 [67]

30

 𝜎𝐻𝑞𝑢𝑎𝑑 =

√

(

 𝐻𝑒𝑓𝑓∗𝜎𝐻𝑒𝑓𝑓

𝐸2√(
𝐻𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

2

+

(

−

𝐵𝑡𝑜𝑡∗𝜎𝐵𝑡𝑜𝑡

√(
𝐻𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

2

+

(

−

𝐻𝑒𝑓𝑓∗𝜎𝐸

𝐸3√(
𝐻𝑒𝑓𝑓

𝐸
)
2

−𝐵𝑡𝑜𝑡
2

)

2

 [68]

These final widths and heights provide a corrected calculation of the effective focal spot size,
accounting for blur and enlargement. The results are shown in Table 5.

Table 5 - Corrected width and height measurements of the large and small focal spots.

Test 𝑾𝒆𝒇𝒇(𝒎𝒎) 𝑯𝒆𝒇𝒇(𝒎𝒎) 𝑾𝒍𝒊𝒏(𝒎𝒎) 𝑯𝒍𝒊𝒏(𝒎𝒎) 𝑾𝒒𝒖𝒂𝒅(𝒎𝒎) 𝑯𝒒𝒖𝒂𝒅(𝒎𝒎)

A 1.40 ± 0.14 1.84± 0.18 1.95 ± 0.24 2.58 ± 0.32 2.03± 0.23 2.67 ± 0.28
B 1.50 ± 0.15 2.02± 0.20 1.92 ± 0.24 2.61 ± 0.32 2.00 ± 0.22 2.69 ± 0.28
C 1.66 ± 0.17 2.16± 0.22 1.95± 0.24 2.56 ± 0.32 2.02± 0.22 2.63 ± 0.28
D 1.64 ± 0.16 2.22± 0.22 1.98± 0.26 2.74 ± 0.35 2.15± 0.23 2.92 ± 0.31
E 1.30 ± 0.13 1.78± 0.18 1.77± 0.23 2.46 ± 0.31 1.86± 0.21 2.54 ± 0.27
F 1.64 ± 0.16 2.14± 0.21 1.72± 0.22 2.26 ± 0.29 1.79± 0.20 2.33 ± 0.25
G 1.10 ± 0.11 1.64± 0.16 1.06± 0.15 1.66 ± 0.22 1.21± 0.14 1.82 ± 0.20
H 1.28 ± 0.13 1.92± 0.19 0.95± 0.13 1.50 ± 0.20 1.08± 0.12 1.63 ± 0.17
I 1.42 ± 0.14 2.26± 0.23 0.99± 0.14 1.66 ± 0.22 1.12± 0.13 1.79 ± 0.19
J 1.38 ± 0.14 2.38± 0.24 0.96± 0.13 1.75 ± 0.23 1.09± 0.12 1.88 ± 0.19

The signal-to-noise ratio (SNR) is calculated using the focal spot mean ⟨𝐹𝑆⟩ and the standard
deviation of the background region, 𝜎𝐵𝐺:

 𝑆𝑁𝑅 =
⟨𝐹𝑆⟩

𝜎𝐵𝐺
±√(

[𝑆𝑇𝐷𝑀]𝐹𝑆

𝜎𝐵𝐺
)
2

+ (−
⟨𝐹𝑆⟩

𝜎𝐵𝐺
2
[𝑆𝐸]𝐵𝐺)

2

 [69]

where the uncertainty on the mean focal spot value is [𝑆𝑇𝐷𝑀]𝐹𝑆, calculated using the standard
deviation of the mean formula:

 [𝑆𝑇𝐷𝑀]𝐹𝑆 =
⟨ 𝐹𝑆⟩𝑠𝑡𝑑

√𝑁
 [70]

with 𝑁 being the sample size. The uncertainty on the standard deviation of the background, [𝑆𝐸]𝐵𝐺,
is calculated using the standard error of the standard deviation formula:

 [𝑆𝐸]𝐵𝐺 =
𝜎𝐵𝐺

√2𝑁−2
 [71]

 where 𝑁 is the sample size. The 𝑆𝑁𝑅 values are shown in Table 6.

31

Table 6 - Calculated Signal-to-Noise Ratio values.

Test ⟨𝑩𝑮⟩ ±𝝈𝑩𝑮 [𝑺𝑬]𝑩𝑮 ⟨𝑭𝑺⟩± [𝑺𝑻𝑫𝑴]𝑭𝑺 SNR
A (24.0± 6.9) × 103 ±0.02× 103 (49.7 ± 0.2) × 103 7.18± 0.03
B (24.9± 7.2) × 103 ±0.02× 103 (46.2 ± 0.2) × 103 6.41± 0.03
C (24.9 ± 7.3) ×103 ±0.03× 103 (47.3 ± 0.1) × 103 6.47± 0.03
D (10.8± 2.7) × 103 ±0.01× 103 (42.4 ± 0.2) × 103 15.7± 0.07
E (13.4± 3.8) × 103 ±0.01× 103 (39.7 ± 0.2) × 103 10.57± 0.06
F (13.9± 4.0) × 103 ±0.01× 103 (42.0 ± 0.2) × 103 10.44± 0.06
G (12.8± 4.7) × 103 ±0.01× 103 (37.8 ± 0.2) × 103 8.02± 0.06
H (14.0± 4.2) × 103 ±0.02× 103 (38.0 ± 0.2) × 103 8.95± 0.06
I (13.5± 4.0) × 103 ±0.02× 103 (38.0 ± 0.2) × 103 9.60± 0.06
J (12.2± 4.2) × 103 ±0.01× 103 (37.8 ± 0.2) × 103 8.89± 0.05

The calculations and analysis presented throughout this section allow for a detailed analysis on each
changing variable:

• Pinhole Size
• Enlargement
• Exposure Time
• Tube Current

Pinhole Size

From Figure 19, the primary variable between Test B and Test D was the pinhole diameter. The
increased smoothness observed in the LSF of Test D may be attributed to this difference. The larger
75 𝜇𝑚 pinhole used in Test D inherently produces more geometric blur, which smooths out fine
details and results in a smoother LSF. This larger aperture also allows more x-rays to pass through,
improving the SNR. In contrast, the 30 𝜇𝑚 pinhole used in Test B reduces blur and provides a sharper,
seemingly more accurate depiction of the focal spot’s spatial distribution. However, the smaller
aperture also restricts photon throughput, decreasing the SNR. The SNR of Test D is 15.7± 0.07,
while the smaller pinhole reduced the SNR of Test B to only 6.41± 0.03.

Although these values fall well below the IEC requirement of an 𝑆𝑁𝑅 ≥ 100, they remain sufficient
for spatial analysis. Therefore, the smaller pinhole is preferable when higher spatial resolution is
required, provided the resulting images still satisfy the IEC criteria of at least 200 signals between the
maximum and background, as well as a width at 15% maximum intensity covering at least 60 pixels.

Exposure Time

The effect of exposure time is demonstrated by comparing Test A (100 𝑚𝑠) and Test E (200 𝑚𝑠). As
expected, the longer exposure time resulted in an improved SNR, increasing from 5.28  ±  0.03 in Test
A to 7.35  ±  0.04 in Test E, likely due to greater photon accumulation. This SNR increase, by a factor
of approximately 1.39, closely matches the theoretical prediction of √2 ≅ 1.41 for Poisson statistics,
where signal increases linearly with exposure time but noise increases with the square root of signal.
This supports the expectation that longer integration times improve image quality by increasing the
dominance of true signal over random fluctuations.

32

It is worth noting that the highest SNR was observed in Test D (15.7  ±  0.07), which used a larger
pinhole, emphasizing that both exposure time and pinhole size influence signal strength. In contrast,
Test B, changing only the pinhole size, had the lowest SNR at 6.41  ±  0.03. Comparisons between
Test A and Test E, and Test B and Test D, suggest that while exposure time does improve both spatial
resolution and SNR, the pinhole size has a more significant impact on both SNR and spatial
dimensions than exposure time alone.

Enlargement

Tests A, B, and C varied only by the
enlargement factor, with values of 0.69±
0.02, 0.75± 0.03, and 0.82 ± 0.03,
respectively. From Table 3 and Figure 21, as
expected, greater enlargement reduced the
total blur. A similar trend was observed
between Tests G and I. Test G, with an
enlargement of 0.90± 0.06, had a total blur
of (0.161± 0.012) 𝑚𝑚, while Test I, with an
enlargement of 1.26± 0.06, showed a total
blur of (0.126± 0.01) 𝑚𝑚.

The final corrected measurements of the
focal spot’s width and height remained
consistent across varying enlargement levels
(Table 5), suggesting that enlargement has a
minimal influence on the corrected focal spot
dimensions compared to other varying
factors.

Tube Current

Tests I and J differed only in tube current, with Test I conducted at 50 𝑚𝐴 and Test J at 100 𝑚𝐴.
Theoretically, increasing the tube current should slightly increase the focal spot size due to
electrostatic repulsion among the increased electron population. However, the results from Tests I
and J do not show conclusive evidence of this relationship, as Test I has a larger width but a smaller
height than Test J. This variation is most likely due to statistical fluctuations rather than experimental
factors such as detector or pinhole misalignment or variations in filament temperature.
Consequently, the effect of the tube current on the focal spot size remains inconclusive and warrants
further investigation.

Figure 21 - Total Blur as a function of Enlargement. The orange
points corresponding to the 75-micron pinhole, and the blue

points correspond to the 30-micron pinhole. The blur
decreases as enlargement increases.

33

4.3 Nominal Value Analysis
The IEC provides a table (Section 7.3.2, Table 3) titled “Maximum permissible values of focal spot
dimensions for nominal focal spot values”, where the nominal focal spot value is assigned by using
the width and length of the measured focal spot in millimeters. Values from the table are reproduced
in Table 7.
Table 7 - IEC table for Maximum permissible values of focal spot dimensions for nominal focal spot values.

Nominal Focal Spot
Value

Focal Spot dimensions,
Maximum permissible values

𝑚𝑚
f Width Length

0.5 0.75 1.10
0.6 0.90 1.30
0.7 1.10 1.50
0.8 1.20 1.60
0.9 1.30 1.80
1.0 1.40 2.00
1.1 1.50 2.20
1.2 1.70 2.40
1.3 1.80 2.60
1.4 1.90 2.80
1.5 2.00 3.00
1.6 2.10 3.10
1.7 2.20 3.20

Using Table 7, the nominal focal spot values are found using the widths and heights from Table 5.

Table 8 - Nominal Focal Spot Values consistent with measured dimensions.

The averages of the linear and quadrature width and height measurements for both the large and
small focal spots are presented in Table 9. Based on these averaged dimensions, a nominal focal
spot value was assigned using the values from Table 7.

Test 𝑾𝒍𝒊𝒏(𝒎𝒎) 𝑯𝒍𝒊𝒏(𝒎𝒎) 𝒇𝑾𝒍𝒊𝒏
 𝒇𝑯𝒍𝒊𝒏 𝑾𝒒𝒖𝒂𝒅(𝒎𝒎) 𝑯𝒒𝒖𝒂𝒅(𝒎𝒎) 𝒇𝑾𝒒𝒖𝒂𝒅

 𝒇𝑯𝒒𝒖𝒂𝒅

A 1.95 ± 0.24 2.58± 0.32 1.5 1.3 2.03 ± 0.23 2.67 ± 0.28 1.6 1.4
B 1.92 ± 0.24 2.61± 0.32 1.5 1.4 2.00 ± 0.22 2.69 ± 0.28 1.5 1.4
C 1.95 ± 0.24 2.56± 0.32 1.5 1.3 2.02± 0.22 2.63 ± 0.28 1.4 1.4
D 1.98 ± 0.26 2.74± 0.35 1.5 1.4 2.15± 0.23 2.92 ± 0.31 1.7 1.5
E 1.77 ± 0.23 2.46± 0.31 1.3 1.2 1.86± 0.21 2.54 ± 0.27 1.4 1.3
F 1.72 ± 0.22 2.26± 0.29 1.3 1.2 1.79± 0.20 2.33 ± 0.25 1.3 1.2

G 1.06 ± 0.15 1.66± 0.22 0.7 0.9 1.21± 0.14 1.82 ± 0.20 0.9 1.0
H 0.95 ± 0.13 1.50± 0.20 0.7 0.7 1.08± 0.12 1.63 ± 0.17 0.7 0.9
I 0.99 ± 0.14 1.65± 0.22 0.7 0.9 1.12± 0.13 1.79 ± 0.19 0.8 1.0
J 0.96 ± 0.13 1.75± 0.23 0.7 0.9 1.09± 0.12 1.88 ± 0.19 0.7 1.0

34

Figure 22 - Example graph of a measured point (Test F) corresponding to the IEC’s nominal values. This is for
the large focal spot’s height, measured linearly.

This

Table 9 - Averaged Large and Small Focal Spot Nominal Values.

Finally, the linear and quadrature values were averaged together for both width and height, and large
and small focal spots. The resulting corrected averages were then used to assign final nominal focal
spot values using Table 7. These are shown in Table 10.

Table 10 - Corrected and averaged focal spot nominal values for both the large and small focal spots.

Focal Spot 𝑾 (𝒎𝒎) 𝑯 (𝒎𝒎) 𝒇𝑾 𝒇𝑯
Large Average 1.93 ± 0.26 2.58± 0.31 1.5 1.3
Small Average 1.07 ± 0.14 1.72± 0.21 0.7 0.9

 Figure 22 illustrates how the measured focal spot height for a test point (Test F) is interpreted relative
to the IEC's nominal focal spot values. The blue line represents the IEC’s relationship between
nominal focal spot values and their corresponding maximum permissible values, as outlined in Table
7. This relationship is nonlinear due to the uneven spacing of maximum permissible values.

Because the IEC provides no uncertainty for nominal values, plotting physical measurements
directly against nominal values can be misleading. To resolve this, the measurement (black dot) and
its uncertainty (magenta error bar) are projected onto the blue IEC curve. The corresponding y-value
is the nominal focal spot value associated with the physical measurement. This effectively translates
the physical measurement and its uncertainty (both only in the x-direction) into a nominal focal spot
value with an implied uncertainty in the y-direction, where the uncertainty is represented by the
shaded pink region. The dashed black lines denote the maximum permissible heights for nominal
values 1.1 and 1.2, bracketing the zone in which the large focal spot is expected to lie (Figure 14).
This enables a more visual comparison between measured data and IEC-defined tolerances.

Figures 23–27 apply the same method to all focal spot measurements, with darker shaded areas
being where uncertainties overlap.

Focal Spot 𝑾𝒍𝒊𝒏(𝒎𝒎) 𝑯𝒍𝒊𝒏(𝒎𝒎) 𝒇𝑾𝒍𝒊𝒏
 𝒇𝑯𝒍𝒊𝒏 𝑾𝒒𝒖𝒂𝒅(𝒎𝒎) 𝑯𝒒𝒖𝒂𝒅(𝒎𝒎) 𝒇𝑾𝒒𝒖𝒂𝒅

 𝒇𝑯𝒒𝒖𝒂𝒅

Large Average 1.88 ± 0.24 2.54 ± 0.32 1,4 1,3 1.97 ± 0.22 2.63 ± 0.28 1,5 1,4

Small Average 1.01 ± 0.14 1.65 ± 0.22 0,7 0,9 1.14 ± 0.13 1.79 ± 0.19 0,8 0,9

35

Figure 23 - Large Focal Spot Corrected Height Measurements.

36

Figure 24 - Large Focal Spot Corrected Width Measurements.

37

Figure 25 - Small Focal Spot Corrected Height Measurements.

38

Figure 26 - Small Focal Spot Corrected Width Measurements.

39

5.0 Results and Discussion

5.1 Results
The Hamamatsu S11684-12 CMOS detector demonstrated sufficient resolution to measure the

nominal focal spot size, achieving a resolution of (18 ± 1) 𝑙𝑝

𝑚𝑚
, consistent with the manufacturer's

specifications. The sharpest images were obtained when the line pairs were aligned vertically along
the detector, as shown in Figure 9. In contrast, the lowest resolution was observed with the diagonal
alignment. This was likely because the diagonal orientation projected the line pairs across both pixel
dimensions (horizontal and vertical), effectively reducing the sampling density and making the line
pairs less distinguishable from the pixel structure.

Equation 12 showed that total blur in the object plane is minimized by maximizing the enlargement.
While direct measurement of blur was not performed, this theoretical prediction is supported
qualitatively by the observed improvements in image sharpness and nominal measurement
accuracy as enlargement increased, as shown in Figure 21, as well as Figures 23 – 27.

The matrix analysis found that both ATN and NTA were effective at normalizing fluctuations caused
by the detector’s row-sequential readout. Although NTA slightly outperformed ATN in limiting the
propagation of fluctuations to neighboring pixels, the difference between the two methods was
minimal. The key observation is that both methods significantly outperformed the manufacturer’s
flat field correction, as shown in Figure 11. In this experiment, only a subset of the 1500 × 1000
image was of interest, allowing specific regions to be allocated for row normalization. This is
something that is not feasible with the FFC approach, which attempts to correct the entire image
uniformly.

Table 11 – Comparing the effects of the fluctuations on the specific deviation point, as well as how it affects the row its in.

Method Effect on Fluctuation
𝚫𝛄𝟏,𝟏

Effect on Row
𝜟𝜸𝟏,𝒄≠𝟏

ATN 0.721 0.0529
NTA 0.724 0.0522

Of all variables tested, pinhole size, exposure time, and enlargement had the most significant impact
on measurement precision. Increasing the enlargement consistently reduced image blur, while using
a smaller pinhole and longer exposure time yielded the most accurate focal spot measurements.

The averaged measured nominal values for the large focal spot were 𝑓𝑊 = 1.5 and 𝑓𝐻 = 1.3. The
averaged measured nominal values for the small focal spot were 𝑓𝑊 = 0.7 and 𝑓𝐻 = 0.9. These
results deviate from the manufacturer’s reported values of 𝑓(𝑙𝑎𝑟𝑔𝑒) = 1.2 and 𝑓(𝑠𝑚𝑎𝑙𝑙) = 0.6.

Based on the above findings, the most accurate measurements were likely those using the smallest
pinhole, longest exposure time, and greatest enlargement. These were Test F for the large focal spot,
and Tests I and J for the small focal spot:

40

Table 12 – Most accurate test conditions and corresponding parameters.

Test
Focal
Spot

(𝒅𝟑± 𝟏𝟎)
𝒎𝒎

(𝒅𝟐 ±𝟏𝟎)
𝒎𝒎

Enlargement
(𝑬)

Pinhole Size
±𝟎.𝟎𝟎𝟓 𝒎𝒎

Tube Current
(𝒎𝑨)

Exposure
Time (𝒎𝒔)

Accelerating
Potential (𝒌𝑽𝒑)

F Large 623 298 0.92 ± 0.040 0.030 200 200 60
I Small 681 379 1.26 ± 0.059 0.075 50 200 60
J Small 681 379 1.26 ± 0.059 0.075 100 200 60

Table 13 – Corresponding nominal values derived from Table 12 measurements.

Test 𝑾𝒍𝒊𝒏(𝒎𝒎) 𝑯𝒍𝒊𝒏(𝒎𝒎) 𝒇𝑾𝒍𝒊𝒏
 𝒇𝑯𝒍𝒊𝒏 𝑾𝒒𝒖𝒂𝒅(𝒎𝒎) 𝑯𝒒𝒖𝒂𝒅(𝒎𝒎) 𝒇𝑾𝒒𝒖𝒂𝒅

 𝒇𝑯𝒒𝒖𝒂𝒅

F 1.72 ± 0.22 2.26± 0.29 1.3 1.2 1.79± 0.20 2.33 ± 0.25 1.3 1.2

I 0.99 ± 0.14 1.65± 0.22 0.7 0.9 1.12± 0.13 1.79 ± 0.19 0.8 1.0
J 0.96 ± 0.13 1.75± 0.23 0.7 0.9 1.09± 0.12 1.88 ± 0.19 0.7 1.0

Figure 27 - Linear measurements corresponding to their nominal focal spot dimensions based on Table 13.
The shaded regions show how measurement uncertainty propagated into nominal value uncertainty.

41

Figure 28 - Quadrature measurements used for the same purpose, with corresponding data from Table 13.

42

5.2 Discussion
The NTA (normalizing-then-averaging) method proved more effective than the ATN (averaging-then-
normalizing) method in reducing row-specific noise caused by the detector’s row-sequential
readout. This reduction is crucial for focal spot measurements, as reliable pixel values are essential
for accurate LSF projections. By normalizing each matrix before averaging, NTA minimizes structured
noise and produces more consistent results. That said, both methods perform similarly overall and
are significantly better than the manufacturer’s FFC. A key advantage of NTA and ATN is that the
normalization factors are calculated using selected regions on either side of the focal spot, extending
from the top to the bottom of the image, ensuring accurate background correction without relying on
the focal spot itself. This targeted approach allows for more precise normalization of row-dependent
fluctuations, unlike the manufacturer’s FFC, which applies a uniform correction across the entire
image and does not account for localized image structure.

Despite this improvement, noise from the detector that is independent of row readout - such
as electronic noise, fixed pattern noise, scattered radiation, and scintillator light spread - remains a
challenge. These types of noise are intrinsic to the detector's design and operation and are difficult
to eliminate entirely. The most effective way to mitigate such noise is through averaging over multiple
images, as this reduces random fluctuations and enhances signal consistency.

Future work should explore the effect of processing larger numbers of raw, dark, and gain images
after employing the NTA method to the Hamamatsu S11684-12 detector. Testing with varying
numbers of averaged images (e.g., 10, 20, or 30) would help determine the number of images needed
to achieve negligible background noise differences. This approach could potentially address the SNR
issue, as obtaining a pinhole image with an SNR greater than 100 is challenging, if not impossible.

The custom detector case built for the Hamamatsu S11684-12 detector proved reliable and
facilitated easier measurements. A combination of Jack Rubio’s detector case (Figure 13), Eva
Anderson’s DVD stand (Figure 15), and Tong Xu’s hollow pipe (Figure 16) allowed the detector to be
aligned to within a small angle relative to the reference axis. However, the exact degree of alignment
could not be confirmed, and potential misalignment of the x-ray tube might have introduced
inaccuracies in some measurements.

Challenges in maintaining alignment were noted. Attaching the case to the bottom of the DVD stand
enabled movement of the entire stand for alignment, rather than just adjusting the detector itself.
Aligning the pinhole and detector gradually as 𝑑2 changed was essential. Starting with the pinhole at
𝑑2 ≅ 10 𝑐𝑚, the image of the focal spot was centered on the detector, but at 𝑑2 ≅ 20 𝑐𝑚, the image
shifted toward the edge. Around 𝑑2 ≅ 30 𝑐𝑚, the image no longer appeared on the detector.
Repeated attempts to realign the pinhole with the reference axis revealed that achieving proper
alignment required moving the detector after positioning the pinhole at greater distances. This
suggests that the reference axis was not truly vertical. Future work should prioritize improved
methods to identify and align with the reference axis to ensure proper x-ray beam geometry.

43

Two IEC requirements were consistently able to be met during testing:

• At least 60 pixels spanned the 15% width of the LSF.
• The pixel value range between the background and focal spot maximum was ≥ 200.

These metrics validate measurement reliability and serve as benchmarks for future experiments.
Determining a minimum 𝑑2 based on enlargement equations (3 and 4) ensured both IEC criteria
were satisfied.

While increasing enlargement reduces blur and improves measurement accuracy, excessive
enlargement can cause signal loss, risking IEC violations. Identifying a practical upper bound for
enlargement that balances precision and signal strength is a logical next step for improving nominal
value measurements.

Smaller pinholes and longer exposure times also improved spatial measurement accuracy.
Optimizing these parameters in tandem with enlargement boundaries will streamline testing and
reduce guesswork.

In summary, this study highlights practical strategies for improving focal spot measurements when
using the Hamamatsu S11684-12 CMOS detector, while also adhering to the IEC’s standards. By
refining alignment techniques, mitigating noise through averaging methods, and optimizing key
parameters such as pinhole size and exposure time, future research can further enhance
measurement accuracy and reproducibility.

5.3 Acknowledgements
I would like to thank Dr. Paul Johns, my supervising professor, for his consistent support and guidance
throughout this project. With his help, I’ve learned how to navigate the research process and
understand the underlying math and physics of x-ray imaging. Beyond academics, Dr. Johns also took
the time to help me with my resume, which ultimately helped me land my first position in the field.
His support speaks to his character and his dedication to his students. Thanks, Paul.

I also want to acknowledge the work of Eva Anderson and André Ramos Moreno; prior students
whose contributions laid the groundwork for this project. Their efforts made many aspects of this
research possible.

Special thanks to Jack Rubio for helping design and 3D print the detector case. You made my life a
lot easier. I’d also like to thank Dr. Tong Xu for machining the hollow metal pipe that made the detector
alignment process significantly smoother.

And finally, to my girlfriend Peyton Horning; thank you for being my biggest supporter through every
challenge and triumph of this experience (especially when my laptop crashed after putting 20 hours
into my midterm report). Your encouragement and positivity kept me going and reminded me why I
care about this work. I wouldn’t be half as driven or fulfilled without you by my side.

44

6.2 References

[1] A. B. Wolbarst and G. Cook, Physics of Radiology. London: Medical Physics Publishing, 2012.

[2] “Bremsstrahlung,” Wikipedia, https://en.wikipedia.org/wiki/Bremsstrahlung (accessed Mar. 17,
2025).

[3] E. Anderson, Evaluation of Miniature X-ray Imaging Detector and Its Application to Focal Spot
Imaging. Ottawa: Carleton University, Physics 4909 Honours Report, Apr. 2022.

[4] E.T.E. Anderson and P.C. Johns, Evaluation of miniature x-ray imaging detector and its application to
focal spot assessment, Poster # 2 at the 68th annual scientific meeting of the Canadian Organization
of Medical Physicists, Quebec City (2022 June 22-25). [Abstract: Medical Physics 49 (8), 5645-5645
(2022), https://dx.doi.org/10.1002/mp.15896].

[5] A. Ramos Moreno, Design and Setup of an Assembly for Evaluating an X-ray Tube Focal Spot. Ottawa:
Mitacs Globalink internship report with Carleton University, Aug. 2024.

[6] Focal spot dimensions and related characteristics IEC 60336 ed. 5.0 B:2020. International
Electrotechnical Commission, Dec. 2020.

[7] U. Themes, “1. plain radiographic imaging,” Radiology Key, https://radiologykey.com/1-plain-
radiographic-imaging-2/ (accessed Mar. 17, 2025).

[8] Hamamatsu Photonics K.K., CMOS Area Image Sensors for X-ray Imaging (USB Interface Type)
S11684-12/-62, Solid State Division, Hamamatsu City, Japan, Nov. 2016.

[9] Hamamatsu Photonics K.K., X-ray Detectors Technical Note, Oct. 2023. [Online].
Available: https://www.hamamatsu.com/resources/pdf/ssd/x -ray_kmpd9016e.pdf [Accessed: Mar.
18, 2025].

[10] F. A. A. Saoudi, "Comparative Study of Scintillator Materials for High Energy Imaging," Open Journal of
Medical Imaging, vol. 8, no. 2, pp. 29–37, 2018. [Online]. Available:
https://www.scirp.org/journal/paperinformation?paperid=82312.

[11] Wikipedia contributors, "Flat-field correction," Wikipedia, The Free Encyclopedia. [Online]. Available:
https://en.wikipedia.org/wiki/Flat-field_correction. [Accessed: Mar. 9, 2025].

[12] Wikipedia contributors, "Hadamard product (matrices)," Wikipedia, The Free Encyclopedia. [Online] .
Available: https://en.wikipedia.org/wiki/Hadamard_product_(matrices). [Accessed: Mar. 15, 2025].

[13] RaySafe, "X-ray Pinhole Assemblies," RaySafe, 2021. [Online]. Available:
https://www.raysafe.com/sites/default/files/2021-07/g21222_pinhole_leaflet_eng_reva.pdf.
[Accessed: Apr. 8, 2025].

[14] Atlantic, "Onyx 28 DVDs/Blu-rays Tower," Atlantic, 2021. [Online]. Available:
https://www.standsandmounts.com. [Accessed: Apr. 8, 2025].

https://en.wikipedia.org/wiki/Bremsstrahlung
https://dx.doi.org/10.1002/mp.15896%5d
https://radiologykey.com/1-plain-radiographic-imaging-2/
https://radiologykey.com/1-plain-radiographic-imaging-2/
https://www.hamamatsu.com/resources/pdf/ssd/x-ray_kmpd9016e.pdf
https://www.scirp.org/journal/paperinformation?paperid=82312
https://en.wikipedia.org/wiki/Flat-field_correction
https://en.wikipedia.org/wiki/Hadamard_product_(matrices)
https://www.raysafe.com/sites/default/files/2021-07/g21222_pinhole_leaflet_eng_reva.pdf
https://www.standsandmounts.com/

Appendix A

A.1 Nominal_Value_Finder.m
This script uses functions “length_average.m” (Appendix A.1.i) and “width_average.m” (Appendix
A.1.ii).

Code Description

Focal Spot Measurement Script

This script is designed to measure the focal spot width and height using data from the Hamamatsu S11684 -12

detector. It analyzes an image array captured in the detector plane, transforms the dimensions to the source plane,

and accounts for optical blur. The script also evaluates signal quality metrics such as Signal-to-Noise Ratio (SNR)

and calculates the number of unique signal levels.

Key Features:

1. Interactive selection of background and focal spot regions.

 2. Calculation of focal spot dimensions in pixels and millimeters.

3. Optical blur correction for accurate measurements.

4. Signal-to-noise ratio computation and uncertainty estimation.

5. Visualization of line spread functions for width and height.

Inputs:

- A '.mat' file containing the image array from the Hamamatsu detector.

- User-defined optical parameters: d3, d2, pinhole size.

Outputs:

- Focal spot dimensions (pixels and millimeters).

- Blur-corrected dimensions.

- Signal-to-noise ratio and uncertainties.

 - Number of unique signal levels.

Uses functions:

- length_average.m

- width_average.m

Author: Grant Budge

clc;

clear;

close all;

Select array and gather info from the array

% Prompts select a .mat file containing the image array data.

disp("Select your array.");

[file, path] = uigetfile('*.mat', 'Select the saved Adjusted array');

46

% Check if the user selected a file or canceled the operation.

if isequal(file, 0)

 disp('No file selected. Exiting script.');

 return; % Exit the script if no file is selected.

else

 % Load the selected .mat file and extract its contents.

 loadedData = load(fullfile(path, file));

 varNames = fieldnames(loadedData); % Get variable names in the .mat file.

 % Check if the .mat file contains any variables, just for error

 % handling

 if isempty(varNames)

 error('The selected .mat file contains no variables.');

 end

 % Extract the first variable in the .mat file as the image array.

 image_array = loadedData.(varNames{1});

end

% Display the name of the selected file for confirmation, this lets the

% user see what variables they used. Users should name their array

% something like "d3_661_d2_298_pinholesize_30_exposuretime_100ms_..."

disp(['The name of your file is: ', file]);

% Prompts to input optical parameters (d3, d2, pinhole size).

while true

 d3 = input("Enter your d3 value in millimeters: ");

 d2 = input("Enter your d2 value in millimeters: ");

 pinhole_size = input("Enter your pinhole in micrometers: ");

 pinhole_size = pinhole_size/1000; % Convert micrometers to millimeters.

 % Define detector maximum blur (fixed value based on system calibration).

 detector_max_blur = 0.0277777; % in millimeters

 % Ensure that d3 is greater than d2; otherwise, prompt again.

 if d3 > d2

 break;

 else

 disp('Error: d3 must be greater than d2. Please try again.');

 end

47

end

% Calculate the enlargement factor based on optical geometry:

Enlargement = d2 / (d3 - d2);

disp(['Enlargement factor: ', num2str(Enlargement)]);

% Find the maximum intensity value in the image array for thresholding later.

max_intensity = max(image_array(:));

Select background

% Prompts to select background region. Select the biggest region possible

% for higher accuracy.

while true

 figure, imshow(image_array, []);

 title('Select a region for the background (click and drag)');

 bg_selection = drawrectangle;

 wait(bg_selection);

 position = bg_selection.Position;

 background_region = image_array(round(position(2)):(round(position(2)) +

round(position(4))), round(position(1)):(round(position(1)) + round(position(3))));

 background_mean = mean(background_region(:));

 disp(['Background mean intensity: ', num2str(background_mean)]);

 if strcmp(questdlg('Are you satisfied with this selection?', 'Confirm Selection',

'Yes', 'No', 'Yes'), 'Yes')

 break;

 else

 close;

 end

end

Select focal spot region

Prompts to select the focal spot region. Make sure to select as little background as possible for highest accuracy.

Include the entire focal spot in selection.

close all;

while true

 figure, imshow(image_array, []);

 title('Select a region around the focal spot');

 focal_region = drawrectangle;

48

 position = focal_region.Position;

 x_start = round(position(1));

 y_start = round(position(2));

 width_region = round(position(3));

 height_region = round(position(4));

 break;

end

% focal spot full region

focal_spot_region = image_array(y_start:(y_start + height_region - 1),

x_start:(x_start + width_region - 1));

Find the width and length

% - width_array: Vertical profile

% - height_array: Horizontal profile (yes, height seems like a backwards

% term when doing it this way)

width_array = width_average(image_array, x_start, y_start, width_region,

height_region);

height_array = length_average(image_array, x_start, y_start, width_region,

height_region);

threshold_intensity = background_mean + 0.15*(max_intensity - background_mean);

disp(['Threshold intensity (15% max): ', num2str(threshold_intensity)]);

Calculate the number of consecutive values > threshhold.

% Function to find the longest sequence of consecutive values above a given threshold

function [max_consecutive_count, start_index, end_index] =

find_max_consecutive_above_threshold(array, threshold)

 count = 0; % Counter for consecutive values above threshold

 max_count = 0; % Maximum count of consecutive values

 start_idx = 0; % Temporary start index for current sequence

 max_start_idx = 0; % Start index of the longest sequence

 max_end_idx = 0; % End index of the longest sequence

 % Loop through the array to check each value against the threshold

 for i = 1:length(array)

 if array(i) > threshold

 if count == 0

49

 start_idx = i; % Start a new sequence

 end

 count = count + 1; % Increment count for consecutive values

 % Update maximum sequence if current sequence is longer

 if count > max_count

 max_count = count;

 max_start_idx = start_idx;

 max_end_idx = i;

 end

 else

 count = 0; % Reset counter if value drops below threshold

 start_idx = 0; % Reset starting point

 end

 end

 % Return the maximum count and indices of the longest sequence

 max_consecutive_count = max_count;

 start_index = max_start_idx;

 end_index = max_end_idx;

end

% Find the maximum consecutive counts above the threshold for width and height arrays

Pixel_width = find_max_consecutive_above_threshold(width_array, threshold_intensity);

Pixel_height = find_max_consecutive_above_threshold(height_array,

threshold_intensity);

% Display the focal spot dimensions in pixels based on the calculated sequences

disp(['The focal spot is: ', num2str(Pixel_width), ' pixels wide']);

disp(['The focal spot is: ', num2str(Pixel_height), ' pixels long']);

% clean up workspace, you may have multiple images open from the selection,

% so we'll close those to save some space

close all;

Find intersection points for width and height

% Find the indices where the intensity profile crosses the threshold

50

width_crossings = find(width_array > threshold_intensity); % Indices where width

profile is above 15% max

height_crossings = find(height_array > threshold_intensity); % Indices where height

profile is above 15% max

% Extract the first and last crossing points for the width profile

width_start = width_crossings(1);

width_end = width_crossings(end);

% Extract the first and last crossing points for the height profile

height_start = height_crossings(1);

height_end = height_crossings(end);

Graphing the line spread function for width

Create a plot of the intensity profile for width

figure;

plot(width_array,"LineWidth",1.5);

title('Line Spread Function - Width');

xlabel('Pixels');

ylabel('Intensity');

hold on;

% Add a horizontal line at the threshold intensity

plot([1, length(width_array)], [threshold_intensity, threshold_intensity], '--

k',"LineWidth",1.5); %threshold line

% Mark the start and end points of the region above threshold with vertical lines

xline(width_start, '--r', 'Start',"LineWidth",1.5); % vertical

xline(width_end, '--r', 'End',"LineWidth",1.5); % vertical

legend('Intensity Profile', '15% max', 'Start', 'End');

Graphing the line spread function for height

Create a plot of the intensity profile for height

figure;

plot(height_array,"LineWidth",1.5);

title('Line Spread Function - Height');

xlabel('Pixels');

ylabel('Intensity');

hold on;

51

% Add a horizontal line at the threshold intensity

plot([1, length(height_array)], [threshold_intensity, threshold_intensity], '--

k',"LineWidth",1.5); % threshold line

% Mark the start and end points of the region above threshold with vertical lines

xline(height_start, '--r', 'Start',"LineWidth",1.5); % vertical

xline(height_end, '--r', 'End',"LineWidth",1.5); % vertical

legend('Intensity Profile', '15% max', 'Start', 'End');

Change from pixels to distance

and take into account enlargement

% pixel size in millimeters

pixel_size = 0.02;

% Convert focal spot dimensions from pixels to millimeters, accounting for

enlargement

focal_spot_width_mm = (Pixel_width * pixel_size) / Enlargement;

focal_spot_height_mm = (Pixel_height * pixel_size)/ Enlargement;

% Display the focal spot dimensions in millimeters

disp(['The focal spot width is: ', num2str(focal_spot_width_mm), ' mm']);

disp(['The focal spot height is: ', num2str(focal_spot_height_mm), ' mm']);

Account for blur Width and Height

% Calculate the total blur using detector blur and pinhole size

Blur = sqrt(detector_max_blur.^2 + pinhole_size.^2 * (Enlargement + 1).^2) /

Enlargement;

% Linear Corrections

quad_no_blur_width = (focal_spot_width_mm / Enlargement) - Blur;

quad_no_blur_height = (focal_spot_height_mm / Enlargement) - Blur;

% % Quadrature Corrections

% no_blur_height = sqrt((focal_spot_width_mm / E)^2 - B_tot^2);

% no_blur_height = sqrt((focal_spot_height_mm/ E)^2 - B_tot^2);

52

disp(['The focal spot width after accounting for blur linearly is: ',

num2str(no_blur_width), ' mm']);

disp(['The focal spot height after accounting for blur linearly is: ',

num2str(no_blur_height), ' mm']);

disp(['The focal spot width after accounting for blur quadrature is: ',

num2str(quad_no_blur_width), ' mm']);

disp(['The focal spot height after accounting for blur quadrature is: ',

num2str(quad_no_blur_height), ' mm']);

Signal to noise ratio

% Calculate the mean signal intensity within the focal spot region

signal = mean(focal_spot_region(:));

% Calculate the standard deviation of the background region (noise)

noise = std(background_region(:),1,"all");

% Calculate the standard deviation of the focal spot region

fs_std = std(focal_spot_region(:),1,"all");

% Compute the signal-to-noise ratio (SNR)

SNR = signal./noise;

% Calculate uncertainties using standard error formulas

n= numel(focal_spot_region) % Number of pixels in the focal spot region

fs_error = fs_std / sqrt(n); % Uncertainty in focal spot mean

m = numel(background_region) % Number of pixels in the background region

BG_std_error = noise / sqrt(m); % Uncertainty in background noise

disp(['The signal to noise ratio is: ', num2str(SNR)]);

disp(['The focal spot mean is ', num2str(signal)]);

disp(['The uncertainty on Focal Spot Mean is ', num2str(fs_error)]);

disp(['The background std is ', num2str(noise)]);

disp(['The uncertainty on Background standard deviation is ',

num2str(BG_std_error)]);

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/

53

A.1.i length_average.m

function row_average = length_average(image_array, x, y, width, height)

 % region of interest is the focal spot rectangle

 roi = image_array(y:y+height-1, x:x+width-1);

 % Compute the mean along each column to get a row

 row_average = mean(roi,1);

end

Published with MATLAB® R2024b

A.1.ii width_average.m

function column_average = width_average(image_array, x, y, width, height)

 % region of interest is the focal spot rectangle

 roi = image_array(y:y+height-1, x:x+width-1);

 % Compute the mean along each row to get a column vector

 column_average = mean(roi, 2);

end

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/
https://www.mathworks.com/products/matlab/

54

A.2 GB_FFC.m

function FFC = GB_FFC()

Code Description

This script performs flat-field correction (FFC) and row normalization for a set of images taken by the Hamamatsu

S11684-12 detector (Dark, X-ray, and Gain) by following these steps:

1. Prompts the user to select and average Dark, X-ray, and Gain images.

2. Minimizes row-sequential readout noise in the averaged images. (ATN method)

3. Performs calculations to subtract the Dark image from the X-ray and Gain images, applies weighted

averaging, and computes the FFC array.

4. Adjusts the FFC array by adding a scaled standard deviation to make most negative values positive.

5. Displays the standard deviation of the FFC array and provides an option to save the result as a '.mat' file.

Uses functions:

- GB_AVG_images(): Function to average selected images. (Appendix A.2.i)

- GB_minimize_noise(): ATN method for row-noise in images. (Appendix B)

- GB_calculate_weighted_average_image(): Function to compute a weighted average of an image array.

(Appendix A.2.ii)

Author: Grant Budge

%--

Section 1

%--

%

% AVERAGE DARK AD

%

fprintf('SELECT ALL DARK IMAGES.\n');

pause(1.5);

% Average all your Dark images by calling the averaging function.

try

 AD = GB_AVG_images();

 disp('Averaging Dark Images...');

catch ME

 disp('You have not selected any images.');

 return;

end

if ~exist('AD','var')|| isempty(AD)

55

 disp('You either cancelled your selection or didnt select valid images.')

 pause(1);

 disp("Ending Script.")

 return;

end

%

% AVERAGE XRAY AX

%

fprintf('SELECT ALL XRAY IMAGES.\n');

pause(1.5);

try

 % Average all of your xray images by calling the averaging function.

 AX = GB_AVG_images();

 disp('Averaging XRAY Images...');

 pause(1);

catch ME

 disp('You have not selected any images.');

 return;

end

if ~exist('AX','var')|| isempty(AX)

 disp('You either cancelled your selection or didnt select valid images.')

 pause(1);

 disp("Ending Script.")

 return;

end

%

% AVERAGE GAIN AG

%

fprintf('SELECT ALL GAIN IMAGES.\n');

pause(1.5);

try

 % Average all of your Gain images by calling the averaging function.

 AG = GB_AVG_images();

 disp('Averaging Gain Images...');

 pause(1);

catch ME

 disp('You have not selected any images.');

 return;

end

56

if ~exist('AG','var')|| isempty(AG)

 disp('You either cancelled your selection or didnt select valid images.')

 pause(1);

 disp("Ending Script.")

 return;

end

%

%--

SELECT ALL DARK IMAGES.

You have not selected any images.

Section 2

%--

AX = GB_minimize_noise(AX,1);

AD = GB_minimize_noise(AD,1);

AG = GB_minimize_noise(AG,1);

%

%

%--

Section 3

%--

%

%

% AX - AD which will give AS, Average Subtracted

%

AS = AX-AD;

%

%

% AG - AD which will give AGC, Average Gain Corrected

%

AGC = AG-AD;

%

%

% Call the weighted average of the AGC = ACGA

%

ACGA = GB_calculate_weighted_average_image(AGC);

57

%

%

% AS * ACGA = ASACGA (no real name for this, just multiplying the entire

% avergae subtraction array by the weighted average gain value)

%

ASACGA = AS .* ACGA;

%

%

% ASACGA / AGC = Flat Field Corrected FFC

FFC = ASACGA ./ AGC;

%--

Section 4

%--

%

% Find the standard deviation

std_ffc = std(FFC(:),'omitnan');

disp('The standard deviation is:');

disp(std_ffc);

% Make most of the negative numbers positive.

fprintf('You will be adding %.3f to your array.', 3*std_ffc);

FFC = FFC + 4.*std_ffc;

%

% we can save the result

[file, path] = uiputfile('*.mat', 'Save the final array');

if isequal(file, 0)

 disp('You decided not to save the final array.');

else

 save(fullfile(path, file), 'FFC'); % Save the FFC array in .mat format

 disp(['You saved as: ', fullfile(path, file)]);

end

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/

58

A.2.i GB_AVG_images
Code Description

GB_AVG_images - Image Averaging Function

This function calculates the pixel-wise average of multiple 16-bit TIFF images while excluding invalid pixels in

triangular regions and edge rows. Designed specifically for flat-field correction in X-ray imaging systems using

Hamamatsu S11684-12 detector.

Key Features:

1. Interactive multi-file selection of 16-bit TIFF images

2. Automatic exclusion of: - Top/bottom 3 rows - Triangular regions at image corners

3. NaN handling for robust averaging with partial valid data

4. Validation of image bit-depth and file integrity

5. Progressive summation to handle large datasets

Inputs:

- User-selected 16-bit TIFF files via dialog box

Outputs:

- AVG_array: Double-precision array of averaged pixel values

Called By:

- GB_FFC.m (Flat Field Correction routine)

Dependencies:

- Image Processing Toolbox

- MATLAB R2024a or newer

Author: Grant Budge

function [AVG_array] = GB_AVG_images()

 AVG_array = [];

 % Using 'uigetfile' to get multiple images.

 [files, path] = uigetfile({'*.tif;*.tiff', 'ONLY 16-bit tif files (*.tif,

*.tiff)'}, ...

 'Select Images', 'MultiSelect', 'on');

 % If you cancel your selection, end the script

 if isequal(files, 0)

 disp('No images selected.');

 return;

 end

 % if only one image is selected, we have to convert the 'files' to a

 % cell array

 if ischar(files)

59

 files = {files};

 end

 % we need to store and count each image selected.

 counter = 0;

 image_sum = [];

 valid_pixel_count = [];

 % Process each of the selected image

 for i = 1:length(files)

 try

 % Read the selected image i

 image = imread(fullfile(path, files{i}));

 catch ME

 warning('Could not read image: %s. Error: %s', files{i}, ME.message);

 continue;

 end

 % Make sure that each image is 16 bits.

 if ~isa(image, 'uint16')

 warning('The selected image: \n %s \n is not 16-bits, it will be

skipped.', files{i});

 continue;

 end

 % Convert the image (i) to a double for the calculation process

 image_array = double(image);

 % Add together the images using rows, columns, and channels

 % This will create a dummy variable, image_sum

 % All images will be added to the last image sum

 % The final image_sum will be taken for averaging

 if counter == 0

 [rows, columns, channels] = size(image_array);

 image_sum = zeros(rows, columns, channels);

 valid_pixel_count = zeros(rows,columns,channels);

 end

 % create a mask that discounts the unwanted pixels. This will turn

 % the top triangles into NaN and will also take care of the top 3

60

 % and bottom 3 rows

 mask = ones(rows,columns);

 for r = 1:117

 mask(r, 1:(117-r+1)) = 0; % Top left triangle

 mask(r,columns - (117-r):columns) = 0; % top right triangle

 end

 mask(1:3,:)=0; % top three rows

 mask(end-2:end,:) = 0; %bottom three rows

 % apply the mask to the image

 image_array(mask == 0) = NaN;

 %now we can count valid pixels and find sums properly

 image_sum = image_sum + image_array;

 valid_pixel_count = valid_pixel_count + ~isnan(image_array);

 counter = counter + 1;

 end

 % If the images have been added together, calculate the average

 if counter > 0

 %avoid division by zero

 valid_pixel_count(valid_pixel_count ==0)=NaN;

 AVG_array = image_sum ./ valid_pixel_count;

 % We return an array to GB_FFC.m

 else

 disp('No valid images were selected.');

 AVG_array = [];

 end

end

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/

61

A.2.ii GB_calculate_weighted_average_image
Code Description

GB_calculate_weighted_average_image - Weighted Pixel Averaging Function

This function computes a weighted average of valid pixels in a 2D array while excluding specific detector regions.

Designed for Hamamatsu S11684-12 CMOS detector data processing in flat-field correction workflows.

Key Features:

1. Hardware-specific masking of: - Top/bottom 3 rows - Triangular corner regions (rows 1-117)

2. Column-wise NaN handling for robust averaging

3. Computes global weighted average across all valid pixels

4. Generates uniform output array with average value

Inputs: - ACG_array: 2D array of corrected gain values (typically from AG-AD calculation)

Outputs: - ACGA: Uniform array filled with computed weighted average value

Called By: - GB_FFC.m (Flat Field Correction routine)

Dependencies:

 - MATLAB base functions

- Requires input array from dark-corrected gain images

Author: Grant Budge

function ACGA = GB_calculate_weighted_average_image(ACG_array)

 % Read in the array

 image1 = ACG_array;

 % Create a binary mask for the triangular regions to be excluded.

 % Mask is specific to S11684-12 CMOS detector by Hamamatsu.

 [rows, cols] = size(image1);

 mask = ones(rows, cols);

 % Define the triangular areas to exclude (top-left and top-right)

 for i = 1:117

 mask(i, 1:(117-i+1)) = 0; % Top-left triangle

 mask(i, cols-(117-i):cols) = 0; % Top-right triangle

 end

 for i = 1:3

 mask(i, 1:cols) = 0; % Top 3 rows

 mask(rows-i+1, 1:cols) = 0; % Bottom 3 rows

 end

 % Apply the mask to set excluded pixels to NaN, for the sake of having

 % consistent values to ignore. (everything ignored is NaN)

62

 image1(mask == 0) = NaN;

 % Initialize some variables for a weighted average

 total_sum = 0;

 total_valid_count = 0;

 % Go through each column to calculate the weighted averages

 for i = 1:cols

 col_values = image1(:, i);

 % Remove all the NaN values from the column

 valid_values = col_values(~isnan(col_values));

 valid_count = length(valid_values);

 % Compute the average.

 if valid_count>0

 total_sum = total_sum + sum(valid_values); % sums ONLY the valid

pixel values

 total_valid_count = total_valid_count + valid_count; % keeps track of

how many pixels are valid.

 end

 end

 % Calculate the weighted average of the array.

 if total_valid_count > 0

 weighted_average_value = total_sum ./ total_valid_count;

 else

 weighted_average_value = NaN;

 end

 % Create a new image of the same size with the average value

 % ACGA = Average Corrected Gain Average

 ACGA = ones(size(image1)) .* weighted_average_value;

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/

63

A.3 GB_image_rotatation.m
Code Description

Focal Spot Image Processing Script

This script processes flat-field corrected (FFC) X-ray focal spot images for analysis and measurement. Provides

interactive tools for alignment and preparation of focal spot images for dimensional measurements.

Key Features:

1. Flexible input: Load existing FFC array or generate new correction

2. Interactive contrast adjustment for optimal visualization

3. Real-time image rotation alignment via user-drawn line

4. Manual cropping interface for region-of-interest selection

5. Dual-format saving (.mat and .tif) for processed images

Inputs:

- User choice: Precomputed FFC array (.mat) or new GB_FFC() generation

- Interactive line drawing for rotation alignment

- Manual cropping selection

Outputs:

- cropped_image_array: Processed focal spot image

- Saved files: .mat (data) and .tif (visualization)

Dependencies:

- GB_FFC.m

- GB_image_window_and_level.m (Appendix A.3.i)

- GB_crop_image.m (Appendix A.3.ii)

Author: Grant Budge

clc; clear; close all;

Step one is to call FFC and to return an array that we can work with

choice = input('Would you like to:\n 1. Load an existing FFC array\n 2. Create

a new FFC array\nEnter 1 or 2: ');

if choice == 1

 % You can select which .mat file to choose from. that way its an array.

 [file, path] = uigetfile('*.mat', 'Select the saved FFC array');

 if isequal(file, 0)

 disp('No file selected. Exiting script.');

 return;

 else

 loadedData = load(fullfile(path, file));

 image_array = loadedData.FFC;

 disp(['Loaded FFC array from: ', fullfile(path, file)]);

 end

64

elseif choice == 2

 %Create a new FFC array

 image_array = GB_FFC();

else

 error('Invalid input. Please restart and enter 1 or 2.');

end

array_minimum_value = min(image_array(:));

if array_minimum_value <0

 image_array = image_array - array_minimum_value;

end

%

%

%

Step two is to adjust the contrast and window so that its easier to work with visually.

[final_level, final_window] = GB_image_window_and_level(image_array, 1);

disp(['Final Level: ', num2str(final_level), ' \n Final Window: ',

num2str(final_window)]);

%

close all;

%

% Adjust the values of image_array using final level and final window

min_val = final_level - final_window / 2;

max_val = final_level + final_window / 2;

%

% put image_array to the range [min_val, max_val]

adjusted_image_array = max(min(image_array, max_val), min_val);

%

% Normalize the adjusted image to a range of [0, 65535]

adjusted_image_array = (adjusted_image_array - min_val) / (max_val - min_val) *

65535;

%

%Display the adjusted image

fig_adjusted = figure;

imshow(adjusted_image_array, [], 'Colormap', gray);

title('The Adjusted Image');

colorbar;

65

%

%

%

We need to rotate the image such that the focal spot is horizontal / vertical

% Loop until happy with alignment

is_happy = false;

roi = [];

while ~is_happy

 % Ask the user to draw the line

 disp('Please draw a line along the length of the focal spot.');

 % Bring the adjusted image figure to front

 figure(fig_adjusted);

 % Delete the last line if it exists

 if ~isempty(roi) && isvalid(roi)

 delete(roi);

 end

 roi = drawline;

 % Endpoints for slope calculation

 position = roi.Position;

 x1 = position(1, 1);

 y1 = position(1, 2);

 x2 = position(2, 1);

 y2 = position(2, 2);

 % Compute the angle with respect to the x-axis

 rotation_angle = atan2(y2 - y1, x2 - x1) * (180 / pi);

 % Rotate image

 rotated_image_array = imrotate(adjusted_image_array, rotation_angle, 'nearest',

'crop');

 % Display the rotated image

66

 fig_rotated = figure;

 imshow(rotated_image_array, [], 'Colormap', gray);

 title(['Rotated Image (Rotated by ', num2str(rotation_angle), ' degrees)']);

 colorbar;

 % Ask user if they are happy with the rotation

 choice = input('Are you happy with the alignment? (1 = Yes, 2 = No): ');

 if choice == 1

 is_happy = true; % Exit loop

 disp(['The image was rotated by ', num2str(rotation_angle), ' degrees to

align focal spot.']);

 close(fig_adjusted); % Close the original adjusted image figure

 else

 close(fig_rotated); % Close the rotated image figure

 disp('Redoing line selection...');

 end

end

Now we can crop around the focal spot

% Call the new function to crop the rotated image array

cropped_image_array = GB_crop_image(rotated_image_array);

figure;

imshow(cropped_image_array, [], 'Colormap', gray);

title('Cropped Focal Spot');

colorbar;

We can save this NEW rotated and cropped array as both a .tif and a .mat

%

% .mat

%

[file, path] = uiputfile('*.mat', 'Save the Cropped and Rotated array as a .mat');

if isequal(file, 0)

 disp('You decided not to save the final array.');

else

 save(fullfile(path, file), 'cropped_image_array');

67

 disp(['You saved as: ', fullfile(path, file)]);

end

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/

68

A.3.i GB_image_window_and_level.m
Code Description

GB_image_window_and_level - Interactive Contrast Adjustment Tool

This function provides interactive window/level adjustment for X-ray focal spot images with automated contrast

recommendations. Integrates with Hamamatsu detector analysis pipelines for optimized image visualization.

Key Features:

1. Dual-mode operation: Automated percentile-based contrast suggestions

2. Interactive terminal interface for manual refinement

3. Real-time image updates with colorbar display

4. Comprehensive statistical reporting (min/max/mean/median/mode)

5. Input validation to prevent invalid contrast ranges

Inputs:

- input_array: 2D image data (typically flat-field corrected)

- fig_num: Figure handle for display

Outputs:

- final_level: Center value of contrast range

 - final_window: Width of contrast range

Called By:

- GB_image_rotation.m

Dependencies:

- Image Processing Toolbox (imshow)

- Statistics and Machine Learning Toolbox (prctile)

Author: Paul Johns

function [final_level, final_window] = GB_image_window_and_level(input_array,

fig_num)

 fmtstr_6 = ['\n','Min = ','%6d \n',' avg = ','%8.1f \n', 'med = ','%6d \n','

mode = ','%6d \n',' max = ','%6d \n'];

 fmtstr_7 = ['\n','Current level = ','%8d'];

 fmtstr_8 = ['Data range = ','%8d',' Current window = ','%8d'];

 % Get array stats

 array_maximum_value = max(input_array(:));

 array_minimum_value = min(input_array(:));

 mode_array_value = mode(input_array, 'all');

 NaN_excluded_array = input_array(~isnan(input_array));

 mean_array_value = mean(NaN_excluded_array);

 median_array_value = median(NaN_excluded_array);

 % Auto contrast using percentiles

 lowerPercentile = prctile(input_array(:), 0.1);

69

 upperPercentile = prctile(input_array(:), 99.9);

 % Recommended values

 autoContrastMin = lowerPercentile;

 autoContrastMax = upperPercentile;

 recomended_level = (autoContrastMin + autoContrastMax) / 2;

 recomended_window = autoContrastMax - autoContrastMin;

 % Ensure window is not zero

 if recomended_window <= 0

 recomended_window = 1;

 end

 % Initialize level and window

 array_level = recomended_level;

 array_window = recomended_window;

 % Display initial image

 figure(fig_num);

 imshow(input_array, "DisplayRange", [array_level - 0.5 * array_window,

array_level + 0.5 * array_window]);

 colorbar;

 % Interactive Adjustment

 flag = 1;

 while (flag)

 fprintf(fmtstr_6, array_minimum_value, mean_array_value, median_array_value,

mode_array_value , array_maximum_value);

 fprintf(fmtstr_7, array_level);

 fprintf('\nRecommended Level: %.2f \n', recomended_level);

 fprintf('Recommended Window: %.2f \n', recomended_window);

 % Get user input

 val1 = input('Enter new level (negative number to skip): ');

 if (val1 <= 0)

 flag = 0;

 else

 val2 = input('Enter new window (negative number to skip): ');

 if (val2 <= 0)

70

 flag = 0;

 end

 end

 if (flag)

 if (~isempty(val1)), array_level = val1; end

 if (~isempty(val2)), array_window = val2; end

 % Ensure valid limits

 array_value_lower_limit = array_level - 0.5 * array_window;

 array_value_upper_limit = array_level + 0.5 * array_window;

 if (array_value_upper_limit == array_value_lower_limit)

 array_value_upper_limit = array_value_lower_limit + 1;

 end

 % Update display

 imshow(input_array, "DisplayRange", [array_value_lower_limit,

array_value_upper_limit]);

 colorbar;

 end

 end

 % Return final level and window values

 final_level = array_level;

 final_window = array_window;

end

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/

71

A.3.ii GB_crop_image
Code Description

GB_crop_image - Interactive Image Cropping Function

This function provides interactive region-of-interest (ROI) selection for cropping focal spot images in X-ray detector

analysis workflows.

Inputs:

- image_array: 2D array of processed image data (typically rotated FFC output)

Outputs:

- cropped_image_array: Subregion of input array containing focal spot

Called By:

- GB_image_rotation.m

Dependencies:

- Image Processing Toolbox (imcrop, drawrectangle)

Author: Grant Budge

function cropped_image_array = GB_crop_image(image_array)

 close all;

 % Display for cropping

 figure;

 imshow(image_array, [], 'Colormap', gray);

 title('Select the region to crop around the focal spot');

 colorbar;

 % Cropping region of interest (in green because I like green)

 roi = drawrectangle('Label', 'Crop Region', 'Color', 'g');

 % take the position of the roi

 position = roi.Position;

 % crop the region

 cropped_image_array = imcrop(image_array, position);

 close(gcf);

end

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/

72

Appendix B

B.1 GB_minimize_noise.m
Code Description

GB_minimize_noise - Adaptive Threshold Normalization (ATN) for Noise Reduction

This function implements the ATN method to minimize structured noise in radiographic images by normalizing row

intensities using edge column averages. Particularly effective for Hamamatsu S11684-12 detector images with

characteristic edge artifacts.

Key Features:

1. Dual-mode operation: Automatic (recommended) or manual column selection

2. Adaptive normalization using edge column statistics

3. NaN-aware calculations for robust processing

4. Row-wise correction preserving central image features

Methodology:

1. Samples left/right edge columns (default: cols 1-150 & 851-1000)

2. Computes row-wise averages of edge regions

3. Calculates global normalization constant 'a'

4. Applies multiplicative correction to entire image

Inputs:

- input_array: 2D image array with noise patterns

- input_value: Control flag (0=auto, 1=manual)

Outputs:

- minimized_noise_array: Corrected image array

Usage Notes:

- Automatic mode recommended for standard detector configurations

- Manual mode allows custom column ranges for specialized applications

Author: Grant Budge

Affiliation: Carleton University

function [minimized_noise_array] = GB_minimize_noise(input_array, input_value)

%--

Section 1:

%--

% The needed stats of the array will be found.

%

OG = input_array;

% Size

[rows, columns] = size(OG);

73

Section 2:

%--

% This will ask the user for a selection of columns on the left side of

% their radiograph. It will tell them the size they have to work with and

% recommend a standard setting.

fprintf('\n');

fprintf('The number of columns in your array is %f', columns);

fprintf('\n We suggest your left side column to be around 1-150 and right side to be

around 851-1000. \n');

flag = 1;

while true

 % THIS IS TO MAKE IT SO YOU CAN MAKE THIS AUTOMATIC FOR DARK AND

 % FOR GAIN IMAGES.

 if input_value == 0

 i=1;

 j=150;

 k=851;

 l=1000;

 flag = 0;

 fprintf('\n Perfect! Lets fix that noise.\n');

 break;

 else

 auto = input('For automatic averaging, enter 0. To manually select columns,

enter any number other than 0: ');

 if isnumeric(auto)

 if auto == 0

 i=1;

 j=150;

 k=851;

 l=1000;

 flag = 0;

 fprintf('\n Perfect! Lets fix that noise.\n');

 break;

 else

 break;

 end

74

 else

 disp('Please enter a valid numeric value.');

 end

 end

end

while flag

 i = input('Enter the starting column of the LEFT side that you would like to

average (1): ');

 j = input('Enter the ending column of the LEFT side that you would like to

average (150): ');

 k = input('Enter the starting column of the RIGHT side that you would like to

average (851): ');

 l = input('Enter the ending column of the RIGHT side that you would like to

average (1000): ');

 % Check the conditions

 if j > i && k > j && l > k && l <= columns

 flag=0; % Exit the loop if all conditions are satisfied

 else

 fprintf('Invalid input. Please ensure that:\n');

 fprintf(' - %d is greater than %d\n',j,i);

 fprintf(' - %d is greater than %d\n',k,j);

 fprintf(' - %d is greater than %d\n',l,k);

 fprintf(' - %d is not greater than the number of columns (%d)\n\n', l

,columns);

 end

end

%

%--

Section 3:

%--

% The math for averaging the columns

%

left = OG(:, i:j); % make a matrix of the left selection (1-150).

right = OG(:,k:l); % make a matrix of the right selection (851-1000).

averaging_array = zeros(rows, j-i+1 + l-k+1); % make an averaging array the size of

the selected columns.

averaging_array(:,1:j-i+1) = left; % let the averaging array contain the left matrix.

75

averaging_array(:,j-i+2:end) = right; % let the averaging array contain the right

matrix.

% This averaging array is now filled with every value that the user

% selected. Some values may be NaN. We're going to average all of the

% Number values and ignore the NaN in EACH ROW. The average of each row

% will be put into a new array. We need to remember that if all of the

% numbers in the row are NAN, then we need to return NaN value. this will

% happen in the top 3 rows and bottom 3 rows every time.

averaged_array=zeros(rows,1);

% for all of the rows in averaging_array, we need to average the number and

% add it to the averaged array

for row = 1:rows

 row_values = averaging_array(row, :);

 % Check if the entire row is NaN

 if all(isnan(row_values))

 averaged_array(row) = NaN; % Keep NaN if all values are NaN

 else

 % Calculate the average of number values

 averaged_array(row) = mean(row_values(~isnan(row_values)));

 end

end

% Now we have our averaged array. we need to normalize it.

% Our normalization constant is "a"

a = mean(averaged_array(~isnan(averaged_array)));

averaged_array = a./averaged_array;

% This averaged array is now normalized and we can multiply value in the

% specifc rows to make the noise better.

minimized_noise_array = OG.*averaged_array;

Published with MATLAB® R2024b

https://www.mathworks.com/products/matlab/

